metadata
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-v2-500m-multi-species
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: >-
nucleotide-transformer-v2-500m-multi-species_ft_BioS2_1kbpHG19_DHSs_H3K27AC
results: []
nucleotide-transformer-v2-500m-multi-species_ft_BioS2_1kbpHG19_DHSs_H3K27AC
This model is a fine-tuned version of InstaDeepAI/nucleotide-transformer-v2-500m-multi-species on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0128
- F1 Score: 0.8753
- Precision: 0.8186
- Recall: 0.9403
- Accuracy: 0.8603
- Auc: 0.9383
- Prc: 0.9326
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
---|---|---|---|---|---|---|---|---|---|
0.534 | 0.1681 | 500 | 0.4570 | 0.7800 | 0.8228 | 0.7414 | 0.7820 | 0.8740 | 0.8666 |
0.3972 | 0.3361 | 1000 | 0.3836 | 0.8574 | 0.8086 | 0.9126 | 0.8418 | 0.9181 | 0.9115 |
0.3583 | 0.5042 | 1500 | 0.3394 | 0.8617 | 0.8135 | 0.9158 | 0.8467 | 0.9321 | 0.9322 |
0.3405 | 0.6723 | 2000 | 0.3418 | 0.8664 | 0.8789 | 0.8542 | 0.8627 | 0.9379 | 0.9360 |
0.323 | 0.8403 | 2500 | 0.3204 | 0.8565 | 0.9085 | 0.8101 | 0.8585 | 0.9453 | 0.9453 |
0.3109 | 1.0084 | 3000 | 0.3163 | 0.8774 | 0.8875 | 0.8675 | 0.8736 | 0.9471 | 0.9477 |
0.2315 | 1.1765 | 3500 | 0.3899 | 0.8803 | 0.8255 | 0.9429 | 0.8664 | 0.9473 | 0.9447 |
0.2265 | 1.3445 | 4000 | 0.3476 | 0.8816 | 0.8476 | 0.9184 | 0.8714 | 0.9483 | 0.9489 |
0.2286 | 1.5126 | 4500 | 0.3797 | 0.8587 | 0.9147 | 0.8091 | 0.8612 | 0.9445 | 0.9471 |
0.23 | 1.6807 | 5000 | 0.3251 | 0.8845 | 0.8714 | 0.8981 | 0.8778 | 0.9486 | 0.9497 |
0.2271 | 1.8487 | 5500 | 0.3160 | 0.8836 | 0.8579 | 0.9110 | 0.8750 | 0.9489 | 0.9489 |
0.2199 | 2.0168 | 6000 | 0.4896 | 0.8836 | 0.8300 | 0.9445 | 0.8703 | 0.9477 | 0.9459 |
0.2465 | 2.1849 | 6500 | 2.0128 | 0.8753 | 0.8186 | 0.9403 | 0.8603 | 0.9383 | 0.9326 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0