tanoManzo's picture
End of training
1ee4e96 verified
metadata
license: cc-by-nc-sa-4.0
base_model: InstaDeepAI/nucleotide-transformer-v2-500m-multi-species
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
model-index:
  - name: >-
      nucleotide-transformer-v2-500m-multi-species_ft_BioS2_1kbpHG19_DHSs_H3K27AC
    results: []

nucleotide-transformer-v2-500m-multi-species_ft_BioS2_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of InstaDeepAI/nucleotide-transformer-v2-500m-multi-species on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0128
  • F1 Score: 0.8753
  • Precision: 0.8186
  • Recall: 0.9403
  • Accuracy: 0.8603
  • Auc: 0.9383
  • Prc: 0.9326

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.534 0.1681 500 0.4570 0.7800 0.8228 0.7414 0.7820 0.8740 0.8666
0.3972 0.3361 1000 0.3836 0.8574 0.8086 0.9126 0.8418 0.9181 0.9115
0.3583 0.5042 1500 0.3394 0.8617 0.8135 0.9158 0.8467 0.9321 0.9322
0.3405 0.6723 2000 0.3418 0.8664 0.8789 0.8542 0.8627 0.9379 0.9360
0.323 0.8403 2500 0.3204 0.8565 0.9085 0.8101 0.8585 0.9453 0.9453
0.3109 1.0084 3000 0.3163 0.8774 0.8875 0.8675 0.8736 0.9471 0.9477
0.2315 1.1765 3500 0.3899 0.8803 0.8255 0.9429 0.8664 0.9473 0.9447
0.2265 1.3445 4000 0.3476 0.8816 0.8476 0.9184 0.8714 0.9483 0.9489
0.2286 1.5126 4500 0.3797 0.8587 0.9147 0.8091 0.8612 0.9445 0.9471
0.23 1.6807 5000 0.3251 0.8845 0.8714 0.8981 0.8778 0.9486 0.9497
0.2271 1.8487 5500 0.3160 0.8836 0.8579 0.9110 0.8750 0.9489 0.9489
0.2199 2.0168 6000 0.4896 0.8836 0.8300 0.9445 0.8703 0.9477 0.9459
0.2465 2.1849 6500 2.0128 0.8753 0.8186 0.9403 0.8603 0.9383 0.9326

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0