See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 19fdb9ba6b2dba79_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/19fdb9ba6b2dba79_train_data.json
type:
field_instruction: title
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config:
max_steps: 50
weight_decay: 0.01
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: tarabukinivan/389f986b-ca2a-46ea-ae4c-e9c8327e4789
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/19fdb9ba6b2dba79_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 389f986b-ca2a-46ea-ae4c-e9c8327e4789
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 389f986b-ca2a-46ea-ae4c-e9c8327e4789
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
389f986b-ca2a-46ea-ae4c-e9c8327e4789
This model is a fine-tuned version of fxmarty/tiny-llama-fast-tokenizer on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.3785
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.378 | 0.0001 | 1 | 10.3787 |
10.3767 | 0.0002 | 2 | 10.3787 |
10.3818 | 0.0003 | 3 | 10.3787 |
10.3757 | 0.0003 | 4 | 10.3787 |
10.3751 | 0.0004 | 5 | 10.3787 |
10.3826 | 0.0005 | 6 | 10.3786 |
10.383 | 0.0006 | 7 | 10.3786 |
10.3717 | 0.0007 | 8 | 10.3785 |
10.3747 | 0.0008 | 9 | 10.3785 |
10.3771 | 0.0008 | 10 | 10.3785 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 50
Model tree for tarabukinivan/389f986b-ca2a-46ea-ae4c-e9c8327e4789
Base model
fxmarty/tiny-llama-fast-tokenizer