|
# EstBERT_NER |
|
|
|
## Model description |
|
|
|
EstBERT_NER is a fine-tuned EstBERT model that can be used for Named Entity Recognition. This model was trained on the Estonian NER dataset created by [Tkachenko et al](https://www.aclweb.org/anthology/W13-2412.pdf). It can recognize three types of entities: locations (LOC), organizations (ORG) and persons (PER). |
|
|
|
## How to use |
|
|
|
You can use this model with Transformers pipeline for NER. Post-processing of results may be necessary as the model occasionally tags subword tokens as entities. |
|
|
|
``` |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification |
|
from transformers import pipeline |
|
|
|
tokenizer = BertTokenizer.from_pretrained('tartuNLP/EstBERT_NER') |
|
bertner = BertForTokenClassification.from_pretrained('tartuNLP/EstBERT_NER') |
|
|
|
nlp = pipeline("ner", model=bertner, tokenizer=tokenizer) |
|
sentence = 'Eesti Ekspressi teada on Eesti Pank uurinud Hansapanga tehinguid , mis toimusid kaks aastat tagasi suvel ja mille käigus voolas panka ligi miljardi krooni ulatuses kahtlast raha .' |
|
|
|
ner_results = nlp(sentence) |
|
print(ner_results) |
|
``` |
|
``` |
|
[{'word': 'Eesti', 'score': 0.9964128136634827, 'entity': 'B-ORG', 'index': 1}, {'word': 'Ekspressi', 'score': 0.9978809356689453, 'entity': 'I-ORG', 'index': 2}, {'word': 'Eesti', 'score': 0.9988121390342712, 'entity': 'B-ORG', 'index': 5}, {'word': 'Pank', 'score': 0.9985784292221069, 'entity': 'I-ORG', 'index': 6}, {'word': 'Hansapanga', 'score': 0.9979034662246704, 'entity': 'B-ORG', 'index': 8}] |
|
|
|
``` |
|
|
|
|
|
|
|
## BibTeX entry and citation info |
|
|
|
``` |
|
@misc{tanvir2020estbert, |
|
title={EstBERT: A Pretrained Language-Specific BERT for Estonian}, |
|
author={Hasan Tanvir and Claudia Kittask and Kairit Sirts}, |
|
year={2020}, |
|
eprint={2011.04784}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |