metadata
library_name: transformers
license: apache-2.0
base_model: HuggingFaceTB/SmolLM2-360M
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: toxicity-scorer-smollm2-360m-freeze
results: []
toxicity-scorer-smollm2-360m-freeze
This model is a fine-tuned version of HuggingFaceTB/SmolLM2-360M on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7434
- F1: 0.6049
- Accuracy: 0.5261
- Precision: 0.7390
- Recall: 0.5261
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 44
- eval_batch_size: 44
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 352
- total_eval_batch_size: 352
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 0.7481 | 0.6025 | 0.5231 | 0.7383 | 0.5231 |
0.7489 | 1.5277 | 5000 | 0.7434 | 0.6049 | 0.5261 | 0.7390 | 0.5261 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3