metadata
license: apache-2.0
language:
- bn
metrics:
- wer
- cer
tags:
- seq2seq
- ipa
- bengali
- byt5
widget:
- text: <Narail> আমি সে বাবুর মামু বাড়ি গিছিলাম।
example_title: Narail Text
- text: <Rangpur> এখন এই কুলো তার শেষ অই কুলো তার শেষ।
example_title: Rangpur Text
- text: <Chittagong> খয়দে সিআরের এইল্লা কি অবস্থা!
example_title: Chittagong Text
- text: <Kishoreganj> আটাইশ করছিলাম দের কানি ক্ষেত, ইবার মাইর কাইছি।
example_title: Kishoreganj Text
- text: <Narsingdi> তারা তো ওই খারাপ খেইলাই আসে না।
example_title: Narsingdi Text
- text: <Tangail> আর সব থেকে ফানি কথা হইতেছে দেখ?
example_title: Tangail Text
Regional bengali text to IPA transcription - umt5-base
This is a fine-tuned version of the google/umt5-base for the task of generating IPA transcriptions from regional bengali text. This was done on the dataset of the competition “ভাষামূল: মুখের ভাষার খোঁজে“ by Bengali.AI.
Scores achieved till now (test scores):
- Word error rate (wer): 0.27792885899543700
- Char error rate (cer): 0.05638457089662550
Supported district tokens:
- Kishoreganj
- Narail
- Narsingdi
- Chittagong
- Rangpur
- Tangail
Loading & using the model
# Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("teamapocalypseml/ben2ipa-mt5base")
model = AutoModelForSeq2SeqLM.from_pretrained("teamapocalypseml/ben2ipa-mt5base")
"""
The format of the input text MUST BE: <district> <bengali_text>
"""
text = "<district> bengali_text_here"
text_ids = tokenizer(text, return_tensors='pt').input_ids
model(text_ids)
Using the pipeline
# Use a pipeline as a high-level helper
from transformers import pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = pipeline("text2text-generation", model="teamapocalypseml/ben2ipa-mt5base", device=device)
"""
`texts` must be in the format of: <district> <contents>
"""
outputs = pipe(texts, max_length=512, batch_size=batch_size)
Credits
Done by S M Jishanul Islam, Sadia Ahmmed, Sahid Hossain Mustakim