metadata
language:
- fr
- en
license: apache-2.0
tags:
- code
widget:
- text: <s> [|User|] Comment faire un bon plat ? </s>[|Assistant|]
model-index:
- name: MiniMerlin-3B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 44.37
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=teilomillet/MiniMerlin-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 66.56
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=teilomillet/MiniMerlin-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 43.21
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=teilomillet/MiniMerlin-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 47.07
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=teilomillet/MiniMerlin-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.4
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=teilomillet/MiniMerlin-3B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 20.17
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=teilomillet/MiniMerlin-3B
name: Open LLM Leaderboard
SFT on a synthetic custom (french) dataset (2k), from general question answering, problem solving to code question. It's a POC.
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
model = AutoModelForCausalLM.from_pretrained(
"teilomillet/MiniMerlin-3B",
revision="0.1",
return_dict=True,
torch_dtype=torch.bfloat16,
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained("teilomillet/MiniMerlin-3B")
tokenizer.pad_token = tokenizer.eos_token
text = "[|User|] Comment faire un bon plat ? </s>[|Assistant|]"
inputs = tokenizer(text, return_tensors="pt").to(0)
outputs = model.generate(**inputs, max_new_tokens=800)
print(tokenizer.decode(outputs[0], skip_special_tokens=False))
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 47.63 |
AI2 Reasoning Challenge (25-Shot) | 44.37 |
HellaSwag (10-Shot) | 66.56 |
MMLU (5-Shot) | 43.21 |
TruthfulQA (0-shot) | 47.07 |
Winogrande (5-shot) | 64.40 |
GSM8k (5-shot) | 20.17 |