|
--- |
|
language: |
|
- fr |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- code |
|
widget: |
|
- text: <s> [|User|] Comment faire un bon plat ? </s>[|Assistant|] |
|
model-index: |
|
- name: MiniMerlin-3B |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 44.37 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=teilomillet/MiniMerlin-3B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 66.56 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=teilomillet/MiniMerlin-3B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 43.21 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=teilomillet/MiniMerlin-3B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 47.07 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=teilomillet/MiniMerlin-3B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 64.4 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=teilomillet/MiniMerlin-3B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 20.17 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=teilomillet/MiniMerlin-3B |
|
name: Open LLM Leaderboard |
|
--- |
|
SFT on a synthetic custom (french) dataset (2k), from general question answering, problem solving to code question. |
|
It's a POC. |
|
|
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel |
|
import torch |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"teilomillet/MiniMerlin-3B", |
|
revision="0.1", |
|
return_dict=True, |
|
torch_dtype=torch.bfloat16, |
|
device_map='auto' |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("teilomillet/MiniMerlin-3B") |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
text = "[|User|] Comment faire un bon plat ? </s>[|Assistant|]" |
|
inputs = tokenizer(text, return_tensors="pt").to(0) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens=800) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=False)) |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_teilomillet__MiniMerlin-3B) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |47.63| |
|
|AI2 Reasoning Challenge (25-Shot)|44.37| |
|
|HellaSwag (10-Shot) |66.56| |
|
|MMLU (5-Shot) |43.21| |
|
|TruthfulQA (0-shot) |47.07| |
|
|Winogrande (5-shot) |64.40| |
|
|GSM8k (5-shot) |20.17| |
|
|
|
|