|
--- |
|
license: cc-by-sa-4.0 |
|
datasets: |
|
- bigcode/the-stack-dedup |
|
- sahil2801/CodeAlpaca-20k |
|
- teknium/GPTeacher-CodeInstruct |
|
model-base: |
|
- replit/replit-code-v1-3b |
|
tags: |
|
- code |
|
- instruct |
|
- self instruct |
|
language: |
|
- code |
|
programming_language: |
|
- Markdown |
|
- Java |
|
- JavaScript |
|
- Python |
|
- TypeScript |
|
- PHP |
|
- SQL |
|
- JSX |
|
- reStructuredText |
|
- Rust |
|
- C |
|
- CSS |
|
- Go |
|
- C++ |
|
- HTML |
|
- Vue |
|
- Ruby |
|
- Jupyter Notebook |
|
- R |
|
- Shell |
|
--- |
|
|
|
Base Model: replit/replit-code-v1-3b |
|
|
|
This model is fine tuned on both Sahil2801's CodeAlpaca & Teknium's GPTeacher Code-Instruct to give Replit's Code model instruct capabilities. |
|
|
|
Try this model on it's HuggingFace demo Spaces: https://huggingface.co/spaces/teknium/Replit-v1-CodeInstruct-3B |
|
|
|
Dataset links: |
|
CodeAlpaca: https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k |
|
GPTeacher subset - Code Instruct: https://github.com/teknium1/GPTeacher |
|
|
|
This model was trained on 2x a100 80gb for 1 hour on ~25,000 code instruction/response pairs in Alpaca format. |
|
|
|
Refer to the base models HuggingFace model card for some basic requirements to run: https://huggingface.co/replit/replit-code-v1-3b |
|
|
|
This fine tune can be prompted like any alpaca fine tune: |
|
``` |
|
### Instruction: |
|
<prompt> |
|
|
|
### Input: |
|
<additional context> |
|
|
|
### Response: |
|
``` |
|
|
|
or |
|
|
|
``` |
|
### Instruction: |
|
<prompt> |
|
|
|
### Response: |
|
|
|
``` |
|
|
|
This model seems to have issues with device="auto" in the model arguments (and requires the trust_remote_code=True, so you should maybe load it like I am here: |
|
``` |
|
self.tokenizer = AutoTokenizer.from_pretrained("./Replit-CodeInstruct/", trust_remote_code=True) |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
"./Replit-CodeInstruct", |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True |
|
) |
|
self.model.to('cuda') |
|
``` |
|
|
|
|
|
This model for me produced coherent outputs with the following sampler settings, but feel free to experiment: |
|
``` |
|
max_new_tokens=128, do_sample=True, use_cache=True, temperature=0.2, top_p=0.9, eos_token_id= self.tokenizer.eos_token_id |
|
``` |
|
|
|
In the tokenizer decode arguments, it also needs these settings: |
|
``` |
|
skip_special_tokens=True, clean_up_tokenization_space=False |
|
``` |
|
|
|
The following parameters were used with HuggingFace trainer to train the model with: |
|
``` |
|
--model_name_or_path replit/replit-code-v1-3b --data_path /root/stanford_alpaca/train.json --bf16 True --output_dir /root/stanford_alpaca/model_ckpts --num_train_epochs 3 --per_device_train_batch_size 4 --per_device_eval_batch_size 1 --gradient_accumulation_steps 8 --save_strategy steps --save_steps 200 --save_total_limit 3 --learning_rate 1e-5 --weight_decay 0. --warmup_ratio 0.03 --tf32 True --run_name Replit1 |
|
``` |