GritLM-8x7B-GGUF / README.md
morriszms's picture
Upload folder using huggingface_hub
3e8f2e8 verified
metadata
pipeline_tag: text-generation
inference: true
license: apache-2.0
datasets:
  - GritLM/tulu2
tags:
  - mteb
  - TensorBlock
  - GGUF
base_model: GritLM/GritLM-8x7B
model-index:
  - name: GritLM-8x7B
    results:
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (en)
          type: mteb/amazon_counterfactual
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 80.47761194029852
          - type: ap
            value: 44.38751347932197
          - type: f1
            value: 74.33580162208256
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonPolarityClassification
          type: mteb/amazon_polarity
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 96.32155000000002
          - type: ap
            value: 94.8026654593679
          - type: f1
            value: 96.3209869463974
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (en)
          type: mteb/amazon_reviews_multi
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 57.18400000000001
          - type: f1
            value: 55.945160479400954
      - task:
          type: Retrieval
        dataset:
          name: MTEB ArguAna
          type: arguana
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 34.353
          - type: map_at_10
            value: 50.773
          - type: map_at_100
            value: 51.515
          - type: map_at_1000
            value: 51.517
          - type: map_at_3
            value: 46.29
          - type: map_at_5
            value: 48.914
          - type: mrr_at_1
            value: 35.135
          - type: mrr_at_10
            value: 51.036
          - type: mrr_at_100
            value: 51.785000000000004
          - type: mrr_at_1000
            value: 51.787000000000006
          - type: mrr_at_3
            value: 46.562
          - type: mrr_at_5
            value: 49.183
          - type: ndcg_at_1
            value: 34.353
          - type: ndcg_at_10
            value: 59.492
          - type: ndcg_at_100
            value: 62.395999999999994
          - type: ndcg_at_1000
            value: 62.44499999999999
          - type: ndcg_at_3
            value: 50.217
          - type: ndcg_at_5
            value: 54.98499999999999
          - type: precision_at_1
            value: 34.353
          - type: precision_at_10
            value: 8.72
          - type: precision_at_100
            value: 0.993
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 20.531
          - type: precision_at_5
            value: 14.651
          - type: recall_at_1
            value: 34.353
          - type: recall_at_10
            value: 87.198
          - type: recall_at_100
            value: 99.289
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 61.592999999999996
          - type: recall_at_5
            value: 73.257
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringP2P
          type: mteb/arxiv-clustering-p2p
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 50.720077577006286
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringS2S
          type: mteb/arxiv-clustering-s2s
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 48.01021098734129
      - task:
          type: Reranking
        dataset:
          name: MTEB AskUbuntuDupQuestions
          type: mteb/askubuntudupquestions-reranking
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 65.59672236627206
          - type: mrr
            value: 78.01191575429802
      - task:
          type: STS
        dataset:
          name: MTEB BIOSSES
          type: mteb/biosses-sts
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 89.52452252271826
          - type: cos_sim_spearman
            value: 87.34415887061094
          - type: euclidean_pearson
            value: 87.46187616533932
          - type: euclidean_spearman
            value: 85.44712769366146
          - type: manhattan_pearson
            value: 87.56696679505373
          - type: manhattan_spearman
            value: 86.01581535039067
      - task:
          type: Classification
        dataset:
          name: MTEB Banking77Classification
          type: mteb/banking77
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 87.4577922077922
          - type: f1
            value: 87.38432712848123
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringP2P
          type: mteb/biorxiv-clustering-p2p
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 41.41290357360428
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringS2S
          type: mteb/biorxiv-clustering-s2s
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 38.67213605633667
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackAndroidRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 37.545
          - type: map_at_10
            value: 50.015
          - type: map_at_100
            value: 51.763999999999996
          - type: map_at_1000
            value: 51.870000000000005
          - type: map_at_3
            value: 46.129999999999995
          - type: map_at_5
            value: 48.473
          - type: mrr_at_1
            value: 47.638999999999996
          - type: mrr_at_10
            value: 56.913000000000004
          - type: mrr_at_100
            value: 57.619
          - type: mrr_at_1000
            value: 57.648999999999994
          - type: mrr_at_3
            value: 54.435
          - type: mrr_at_5
            value: 56.059000000000005
          - type: ndcg_at_1
            value: 47.638999999999996
          - type: ndcg_at_10
            value: 56.664
          - type: ndcg_at_100
            value: 62.089000000000006
          - type: ndcg_at_1000
            value: 63.415
          - type: ndcg_at_3
            value: 51.842999999999996
          - type: ndcg_at_5
            value: 54.30199999999999
          - type: precision_at_1
            value: 47.638999999999996
          - type: precision_at_10
            value: 10.886999999999999
          - type: precision_at_100
            value: 1.722
          - type: precision_at_1000
            value: 0.212
          - type: precision_at_3
            value: 25.179000000000002
          - type: precision_at_5
            value: 18.226
          - type: recall_at_1
            value: 37.545
          - type: recall_at_10
            value: 68.118
          - type: recall_at_100
            value: 90.381
          - type: recall_at_1000
            value: 98.556
          - type: recall_at_3
            value: 53.319
          - type: recall_at_5
            value: 60.574
          - type: map_at_1
            value: 37.066
          - type: map_at_10
            value: 49.464000000000006
          - type: map_at_100
            value: 50.79900000000001
          - type: map_at_1000
            value: 50.928
          - type: map_at_3
            value: 46.133
          - type: map_at_5
            value: 47.941
          - type: mrr_at_1
            value: 48.025
          - type: mrr_at_10
            value: 56.16100000000001
          - type: mrr_at_100
            value: 56.725
          - type: mrr_at_1000
            value: 56.757000000000005
          - type: mrr_at_3
            value: 54.31
          - type: mrr_at_5
            value: 55.285
          - type: ndcg_at_1
            value: 48.025
          - type: ndcg_at_10
            value: 55.467
          - type: ndcg_at_100
            value: 59.391000000000005
          - type: ndcg_at_1000
            value: 61.086
          - type: ndcg_at_3
            value: 51.733
          - type: ndcg_at_5
            value: 53.223
          - type: precision_at_1
            value: 48.025
          - type: precision_at_10
            value: 10.656
          - type: precision_at_100
            value: 1.6070000000000002
          - type: precision_at_1000
            value: 0.20600000000000002
          - type: precision_at_3
            value: 25.499
          - type: precision_at_5
            value: 17.771
          - type: recall_at_1
            value: 37.066
          - type: recall_at_10
            value: 65.062
          - type: recall_at_100
            value: 81.662
          - type: recall_at_1000
            value: 91.913
          - type: recall_at_3
            value: 52.734
          - type: recall_at_5
            value: 57.696999999999996
          - type: map_at_1
            value: 46.099000000000004
          - type: map_at_10
            value: 59.721999999999994
          - type: map_at_100
            value: 60.675000000000004
          - type: map_at_1000
            value: 60.708
          - type: map_at_3
            value: 55.852000000000004
          - type: map_at_5
            value: 58.426
          - type: mrr_at_1
            value: 53.417
          - type: mrr_at_10
            value: 63.597
          - type: mrr_at_100
            value: 64.12299999999999
          - type: mrr_at_1000
            value: 64.13799999999999
          - type: mrr_at_3
            value: 61.149
          - type: mrr_at_5
            value: 62.800999999999995
          - type: ndcg_at_1
            value: 53.417
          - type: ndcg_at_10
            value: 65.90899999999999
          - type: ndcg_at_100
            value: 69.312
          - type: ndcg_at_1000
            value: 69.89
          - type: ndcg_at_3
            value: 60.089999999999996
          - type: ndcg_at_5
            value: 63.575
          - type: precision_at_1
            value: 53.417
          - type: precision_at_10
            value: 10.533
          - type: precision_at_100
            value: 1.313
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 26.667
          - type: precision_at_5
            value: 18.671
          - type: recall_at_1
            value: 46.099000000000004
          - type: recall_at_10
            value: 80.134
          - type: recall_at_100
            value: 94.536
          - type: recall_at_1000
            value: 98.543
          - type: recall_at_3
            value: 65.026
          - type: recall_at_5
            value: 73.462
          - type: map_at_1
            value: 28.261999999999997
          - type: map_at_10
            value: 38.012
          - type: map_at_100
            value: 39.104
          - type: map_at_1000
            value: 39.177
          - type: map_at_3
            value: 35.068
          - type: map_at_5
            value: 36.620000000000005
          - type: mrr_at_1
            value: 30.847
          - type: mrr_at_10
            value: 40.251999999999995
          - type: mrr_at_100
            value: 41.174
          - type: mrr_at_1000
            value: 41.227999999999994
          - type: mrr_at_3
            value: 37.74
          - type: mrr_at_5
            value: 38.972
          - type: ndcg_at_1
            value: 30.847
          - type: ndcg_at_10
            value: 43.513000000000005
          - type: ndcg_at_100
            value: 48.771
          - type: ndcg_at_1000
            value: 50.501
          - type: ndcg_at_3
            value: 37.861
          - type: ndcg_at_5
            value: 40.366
          - type: precision_at_1
            value: 30.847
          - type: precision_at_10
            value: 6.7909999999999995
          - type: precision_at_100
            value: 0.992
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 16.234
          - type: precision_at_5
            value: 11.254
          - type: recall_at_1
            value: 28.261999999999997
          - type: recall_at_10
            value: 58.292
          - type: recall_at_100
            value: 82.24000000000001
          - type: recall_at_1000
            value: 95.042
          - type: recall_at_3
            value: 42.955
          - type: recall_at_5
            value: 48.973
          - type: map_at_1
            value: 18.281
          - type: map_at_10
            value: 27.687
          - type: map_at_100
            value: 28.9
          - type: map_at_1000
            value: 29.019000000000002
          - type: map_at_3
            value: 24.773
          - type: map_at_5
            value: 26.180999999999997
          - type: mrr_at_1
            value: 23.01
          - type: mrr_at_10
            value: 32.225
          - type: mrr_at_100
            value: 33.054
          - type: mrr_at_1000
            value: 33.119
          - type: mrr_at_3
            value: 29.353
          - type: mrr_at_5
            value: 30.846
          - type: ndcg_at_1
            value: 23.01
          - type: ndcg_at_10
            value: 33.422000000000004
          - type: ndcg_at_100
            value: 39.108
          - type: ndcg_at_1000
            value: 41.699999999999996
          - type: ndcg_at_3
            value: 28.083999999999996
          - type: ndcg_at_5
            value: 30.164
          - type: precision_at_1
            value: 23.01
          - type: precision_at_10
            value: 6.493
          - type: precision_at_100
            value: 1.077
          - type: precision_at_1000
            value: 0.14100000000000001
          - type: precision_at_3
            value: 13.930000000000001
          - type: precision_at_5
            value: 10.075000000000001
          - type: recall_at_1
            value: 18.281
          - type: recall_at_10
            value: 46.318
          - type: recall_at_100
            value: 71.327
          - type: recall_at_1000
            value: 89.716
          - type: recall_at_3
            value: 31.517
          - type: recall_at_5
            value: 36.821
          - type: map_at_1
            value: 36.575
          - type: map_at_10
            value: 49.235
          - type: map_at_100
            value: 50.723
          - type: map_at_1000
            value: 50.809000000000005
          - type: map_at_3
            value: 45.696999999999996
          - type: map_at_5
            value: 47.588
          - type: mrr_at_1
            value: 45.525
          - type: mrr_at_10
            value: 55.334
          - type: mrr_at_100
            value: 56.092
          - type: mrr_at_1000
            value: 56.118
          - type: mrr_at_3
            value: 53.032000000000004
          - type: mrr_at_5
            value: 54.19199999999999
          - type: ndcg_at_1
            value: 45.525
          - type: ndcg_at_10
            value: 55.542
          - type: ndcg_at_100
            value: 60.879000000000005
          - type: ndcg_at_1000
            value: 62.224999999999994
          - type: ndcg_at_3
            value: 50.688
          - type: ndcg_at_5
            value: 52.76499999999999
          - type: precision_at_1
            value: 45.525
          - type: precision_at_10
            value: 10.067
          - type: precision_at_100
            value: 1.471
          - type: precision_at_1000
            value: 0.173
          - type: precision_at_3
            value: 24.382
          - type: precision_at_5
            value: 16.919999999999998
          - type: recall_at_1
            value: 36.575
          - type: recall_at_10
            value: 67.903
          - type: recall_at_100
            value: 89.464
          - type: recall_at_1000
            value: 97.799
          - type: recall_at_3
            value: 53.493
          - type: recall_at_5
            value: 59.372
          - type: map_at_1
            value: 29.099000000000004
          - type: map_at_10
            value: 42.147
          - type: map_at_100
            value: 43.522
          - type: map_at_1000
            value: 43.624
          - type: map_at_3
            value: 38.104
          - type: map_at_5
            value: 40.435
          - type: mrr_at_1
            value: 36.416
          - type: mrr_at_10
            value: 47.922
          - type: mrr_at_100
            value: 48.664
          - type: mrr_at_1000
            value: 48.709
          - type: mrr_at_3
            value: 44.977000000000004
          - type: mrr_at_5
            value: 46.838
          - type: ndcg_at_1
            value: 36.416
          - type: ndcg_at_10
            value: 49.307
          - type: ndcg_at_100
            value: 54.332
          - type: ndcg_at_1000
            value: 56.145
          - type: ndcg_at_3
            value: 42.994
          - type: ndcg_at_5
            value: 46.119
          - type: precision_at_1
            value: 36.416
          - type: precision_at_10
            value: 9.452
          - type: precision_at_100
            value: 1.4080000000000001
          - type: precision_at_1000
            value: 0.172
          - type: precision_at_3
            value: 21.081
          - type: precision_at_5
            value: 15.501999999999999
          - type: recall_at_1
            value: 29.099000000000004
          - type: recall_at_10
            value: 64.485
          - type: recall_at_100
            value: 84.753
          - type: recall_at_1000
            value: 96.875
          - type: recall_at_3
            value: 47.06
          - type: recall_at_5
            value: 55.077
          - type: map_at_1
            value: 30.69458333333333
          - type: map_at_10
            value: 41.65291666666666
          - type: map_at_100
            value: 42.95775
          - type: map_at_1000
            value: 43.06258333333333
          - type: map_at_3
            value: 38.335750000000004
          - type: map_at_5
            value: 40.20941666666666
          - type: mrr_at_1
            value: 37.013000000000005
          - type: mrr_at_10
            value: 46.30600000000001
          - type: mrr_at_100
            value: 47.094666666666676
          - type: mrr_at_1000
            value: 47.139583333333334
          - type: mrr_at_3
            value: 43.805749999999996
          - type: mrr_at_5
            value: 45.22366666666666
          - type: ndcg_at_1
            value: 37.013000000000005
          - type: ndcg_at_10
            value: 47.63491666666667
          - type: ndcg_at_100
            value: 52.71083333333334
          - type: ndcg_at_1000
            value: 54.493583333333326
          - type: ndcg_at_3
            value: 42.43616666666666
          - type: ndcg_at_5
            value: 44.87583333333334
          - type: precision_at_1
            value: 37.013000000000005
          - type: precision_at_10
            value: 8.481583333333333
          - type: precision_at_100
            value: 1.3073333333333337
          - type: precision_at_1000
            value: 0.16341666666666668
          - type: precision_at_3
            value: 19.811833333333333
          - type: precision_at_5
            value: 14.07691666666667
          - type: recall_at_1
            value: 30.69458333333333
          - type: recall_at_10
            value: 60.462083333333325
          - type: recall_at_100
            value: 82.42325000000001
          - type: recall_at_1000
            value: 94.53291666666667
          - type: recall_at_3
            value: 45.7405
          - type: recall_at_5
            value: 52.14025
          - type: map_at_1
            value: 27.833000000000002
          - type: map_at_10
            value: 36.55
          - type: map_at_100
            value: 37.524
          - type: map_at_1000
            value: 37.613
          - type: map_at_3
            value: 33.552
          - type: map_at_5
            value: 35.173
          - type: mrr_at_1
            value: 31.135
          - type: mrr_at_10
            value: 39.637
          - type: mrr_at_100
            value: 40.361000000000004
          - type: mrr_at_1000
            value: 40.422000000000004
          - type: mrr_at_3
            value: 36.887
          - type: mrr_at_5
            value: 38.428000000000004
          - type: ndcg_at_1
            value: 31.135
          - type: ndcg_at_10
            value: 42.007
          - type: ndcg_at_100
            value: 46.531
          - type: ndcg_at_1000
            value: 48.643
          - type: ndcg_at_3
            value: 36.437999999999995
          - type: ndcg_at_5
            value: 39.021
          - type: precision_at_1
            value: 31.135
          - type: precision_at_10
            value: 6.856
          - type: precision_at_100
            value: 0.988
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 15.9
          - type: precision_at_5
            value: 11.227
          - type: recall_at_1
            value: 27.833000000000002
          - type: recall_at_10
            value: 55.711
          - type: recall_at_100
            value: 76.255
          - type: recall_at_1000
            value: 91.51899999999999
          - type: recall_at_3
            value: 40.22
          - type: recall_at_5
            value: 46.69
          - type: map_at_1
            value: 21.274
          - type: map_at_10
            value: 29.925
          - type: map_at_100
            value: 31.171
          - type: map_at_1000
            value: 31.296000000000003
          - type: map_at_3
            value: 27.209
          - type: map_at_5
            value: 28.707
          - type: mrr_at_1
            value: 26.462000000000003
          - type: mrr_at_10
            value: 34.604
          - type: mrr_at_100
            value: 35.554
          - type: mrr_at_1000
            value: 35.622
          - type: mrr_at_3
            value: 32.295
          - type: mrr_at_5
            value: 33.598
          - type: ndcg_at_1
            value: 26.462000000000003
          - type: ndcg_at_10
            value: 35.193000000000005
          - type: ndcg_at_100
            value: 40.876000000000005
          - type: ndcg_at_1000
            value: 43.442
          - type: ndcg_at_3
            value: 30.724
          - type: ndcg_at_5
            value: 32.735
          - type: precision_at_1
            value: 26.462000000000003
          - type: precision_at_10
            value: 6.438000000000001
          - type: precision_at_100
            value: 1.093
          - type: precision_at_1000
            value: 0.15
          - type: precision_at_3
            value: 14.636
          - type: precision_at_5
            value: 10.496
          - type: recall_at_1
            value: 21.274
          - type: recall_at_10
            value: 46.322
          - type: recall_at_100
            value: 71.702
          - type: recall_at_1000
            value: 89.405
          - type: recall_at_3
            value: 33.444
          - type: recall_at_5
            value: 38.83
          - type: map_at_1
            value: 31.174000000000003
          - type: map_at_10
            value: 42.798
          - type: map_at_100
            value: 43.996
          - type: map_at_1000
            value: 44.088
          - type: map_at_3
            value: 39.255
          - type: map_at_5
            value: 41.336
          - type: mrr_at_1
            value: 37.22
          - type: mrr_at_10
            value: 47.035
          - type: mrr_at_100
            value: 47.833999999999996
          - type: mrr_at_1000
            value: 47.88
          - type: mrr_at_3
            value: 44.248
          - type: mrr_at_5
            value: 45.815
          - type: ndcg_at_1
            value: 37.22
          - type: ndcg_at_10
            value: 48.931999999999995
          - type: ndcg_at_100
            value: 53.991
          - type: ndcg_at_1000
            value: 55.825
          - type: ndcg_at_3
            value: 43.144
          - type: ndcg_at_5
            value: 45.964
          - type: precision_at_1
            value: 37.22
          - type: precision_at_10
            value: 8.451
          - type: precision_at_100
            value: 1.2189999999999999
          - type: precision_at_1000
            value: 0.149
          - type: precision_at_3
            value: 20.087
          - type: precision_at_5
            value: 14.235000000000001
          - type: recall_at_1
            value: 31.174000000000003
          - type: recall_at_10
            value: 63.232
          - type: recall_at_100
            value: 84.747
          - type: recall_at_1000
            value: 97.006
          - type: recall_at_3
            value: 47.087
          - type: recall_at_5
            value: 54.493
          - type: map_at_1
            value: 29.628
          - type: map_at_10
            value: 39.995999999999995
          - type: map_at_100
            value: 41.899
          - type: map_at_1000
            value: 42.125
          - type: map_at_3
            value: 36.345
          - type: map_at_5
            value: 38.474000000000004
          - type: mrr_at_1
            value: 36.364000000000004
          - type: mrr_at_10
            value: 45.293
          - type: mrr_at_100
            value: 46.278999999999996
          - type: mrr_at_1000
            value: 46.318
          - type: mrr_at_3
            value: 42.522999999999996
          - type: mrr_at_5
            value: 44.104
          - type: ndcg_at_1
            value: 36.364000000000004
          - type: ndcg_at_10
            value: 46.622
          - type: ndcg_at_100
            value: 52.617000000000004
          - type: ndcg_at_1000
            value: 54.529
          - type: ndcg_at_3
            value: 40.971999999999994
          - type: ndcg_at_5
            value: 43.738
          - type: precision_at_1
            value: 36.364000000000004
          - type: precision_at_10
            value: 9.110999999999999
          - type: precision_at_100
            value: 1.846
          - type: precision_at_1000
            value: 0.256
          - type: precision_at_3
            value: 19.236
          - type: precision_at_5
            value: 14.269000000000002
          - type: recall_at_1
            value: 29.628
          - type: recall_at_10
            value: 58.706
          - type: recall_at_100
            value: 85.116
          - type: recall_at_1000
            value: 97.258
          - type: recall_at_3
            value: 42.655
          - type: recall_at_5
            value: 49.909
          - type: map_at_1
            value: 25.499
          - type: map_at_10
            value: 34.284
          - type: map_at_100
            value: 35.416
          - type: map_at_1000
            value: 35.494
          - type: map_at_3
            value: 31.911
          - type: map_at_5
            value: 33.159
          - type: mrr_at_1
            value: 28.096
          - type: mrr_at_10
            value: 36.699
          - type: mrr_at_100
            value: 37.657000000000004
          - type: mrr_at_1000
            value: 37.714999999999996
          - type: mrr_at_3
            value: 34.72
          - type: mrr_at_5
            value: 35.746
          - type: ndcg_at_1
            value: 28.096
          - type: ndcg_at_10
            value: 39.041
          - type: ndcg_at_100
            value: 44.633
          - type: ndcg_at_1000
            value: 46.522000000000006
          - type: ndcg_at_3
            value: 34.663
          - type: ndcg_at_5
            value: 36.538
          - type: precision_at_1
            value: 28.096
          - type: precision_at_10
            value: 6.0440000000000005
          - type: precision_at_100
            value: 0.9520000000000001
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 14.911
          - type: precision_at_5
            value: 10.277
          - type: recall_at_1
            value: 25.499
          - type: recall_at_10
            value: 51.26199999999999
          - type: recall_at_100
            value: 76.896
          - type: recall_at_1000
            value: 90.763
          - type: recall_at_3
            value: 39.376
          - type: recall_at_5
            value: 43.785000000000004
      - task:
          type: Retrieval
        dataset:
          name: MTEB ClimateFEVER
          type: climate-fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.532
          - type: map_at_10
            value: 19.911
          - type: map_at_100
            value: 21.926000000000002
          - type: map_at_1000
            value: 22.113
          - type: map_at_3
            value: 16.118
          - type: map_at_5
            value: 18.043
          - type: mrr_at_1
            value: 23.909
          - type: mrr_at_10
            value: 37.029
          - type: mrr_at_100
            value: 38.015
          - type: mrr_at_1000
            value: 38.054
          - type: mrr_at_3
            value: 33.29
          - type: mrr_at_5
            value: 35.446
          - type: ndcg_at_1
            value: 23.909
          - type: ndcg_at_10
            value: 28.691
          - type: ndcg_at_100
            value: 36.341
          - type: ndcg_at_1000
            value: 39.644
          - type: ndcg_at_3
            value: 22.561
          - type: ndcg_at_5
            value: 24.779999999999998
          - type: precision_at_1
            value: 23.909
          - type: precision_at_10
            value: 9.433
          - type: precision_at_100
            value: 1.763
          - type: precision_at_1000
            value: 0.23800000000000002
          - type: precision_at_3
            value: 17.438000000000002
          - type: precision_at_5
            value: 13.758999999999999
          - type: recall_at_1
            value: 10.532
          - type: recall_at_10
            value: 36.079
          - type: recall_at_100
            value: 62.156
          - type: recall_at_1000
            value: 80.53099999999999
          - type: recall_at_3
            value: 21.384
          - type: recall_at_5
            value: 27.29
      - task:
          type: Retrieval
        dataset:
          name: MTEB DBPedia
          type: dbpedia-entity
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.483
          - type: map_at_10
            value: 21.986
          - type: map_at_100
            value: 31.319000000000003
          - type: map_at_1000
            value: 33.231
          - type: map_at_3
            value: 15.193000000000001
          - type: map_at_5
            value: 18.116
          - type: mrr_at_1
            value: 74
          - type: mrr_at_10
            value: 80.047
          - type: mrr_at_100
            value: 80.406
          - type: mrr_at_1000
            value: 80.414
          - type: mrr_at_3
            value: 78.667
          - type: mrr_at_5
            value: 79.467
          - type: ndcg_at_1
            value: 61.875
          - type: ndcg_at_10
            value: 46.544999999999995
          - type: ndcg_at_100
            value: 51.097
          - type: ndcg_at_1000
            value: 58.331999999999994
          - type: ndcg_at_3
            value: 51.622
          - type: ndcg_at_5
            value: 49.016
          - type: precision_at_1
            value: 74
          - type: precision_at_10
            value: 37.325
          - type: precision_at_100
            value: 11.743
          - type: precision_at_1000
            value: 2.423
          - type: precision_at_3
            value: 54.75
          - type: precision_at_5
            value: 47.699999999999996
          - type: recall_at_1
            value: 9.483
          - type: recall_at_10
            value: 27.477
          - type: recall_at_100
            value: 57.099999999999994
          - type: recall_at_1000
            value: 80.56
          - type: recall_at_3
            value: 16.543
          - type: recall_at_5
            value: 20.830000000000002
      - task:
          type: Classification
        dataset:
          name: MTEB EmotionClassification
          type: mteb/emotion
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 50.06
          - type: f1
            value: 44.99375486940016
      - task:
          type: Retrieval
        dataset:
          name: MTEB FEVER
          type: fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 70.94
          - type: map_at_10
            value: 80.854
          - type: map_at_100
            value: 81.096
          - type: map_at_1000
            value: 81.109
          - type: map_at_3
            value: 79.589
          - type: map_at_5
            value: 80.431
          - type: mrr_at_1
            value: 76.44800000000001
          - type: mrr_at_10
            value: 85.07000000000001
          - type: mrr_at_100
            value: 85.168
          - type: mrr_at_1000
            value: 85.17
          - type: mrr_at_3
            value: 84.221
          - type: mrr_at_5
            value: 84.832
          - type: ndcg_at_1
            value: 76.44800000000001
          - type: ndcg_at_10
            value: 85.019
          - type: ndcg_at_100
            value: 85.886
          - type: ndcg_at_1000
            value: 86.09400000000001
          - type: ndcg_at_3
            value: 83.023
          - type: ndcg_at_5
            value: 84.223
          - type: precision_at_1
            value: 76.44800000000001
          - type: precision_at_10
            value: 10.405000000000001
          - type: precision_at_100
            value: 1.105
          - type: precision_at_1000
            value: 0.11399999999999999
          - type: precision_at_3
            value: 32.208
          - type: precision_at_5
            value: 20.122999999999998
          - type: recall_at_1
            value: 70.94
          - type: recall_at_10
            value: 93.508
          - type: recall_at_100
            value: 96.962
          - type: recall_at_1000
            value: 98.24300000000001
          - type: recall_at_3
            value: 88.17099999999999
          - type: recall_at_5
            value: 91.191
      - task:
          type: Retrieval
        dataset:
          name: MTEB FiQA2018
          type: fiqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.844
          - type: map_at_10
            value: 41.629
          - type: map_at_100
            value: 43.766
          - type: map_at_1000
            value: 43.916
          - type: map_at_3
            value: 35.992000000000004
          - type: map_at_5
            value: 39.302
          - type: mrr_at_1
            value: 45.988
          - type: mrr_at_10
            value: 56.050999999999995
          - type: mrr_at_100
            value: 56.741
          - type: mrr_at_1000
            value: 56.767999999999994
          - type: mrr_at_3
            value: 53.498000000000005
          - type: mrr_at_5
            value: 55.071999999999996
          - type: ndcg_at_1
            value: 45.988
          - type: ndcg_at_10
            value: 49.891999999999996
          - type: ndcg_at_100
            value: 56.727000000000004
          - type: ndcg_at_1000
            value: 58.952000000000005
          - type: ndcg_at_3
            value: 45.09
          - type: ndcg_at_5
            value: 46.943
          - type: precision_at_1
            value: 45.988
          - type: precision_at_10
            value: 13.980999999999998
          - type: precision_at_100
            value: 2.136
          - type: precision_at_1000
            value: 0.252
          - type: precision_at_3
            value: 30.556
          - type: precision_at_5
            value: 22.778000000000002
          - type: recall_at_1
            value: 23.844
          - type: recall_at_10
            value: 58.46
          - type: recall_at_100
            value: 82.811
          - type: recall_at_1000
            value: 96.084
          - type: recall_at_3
            value: 41.636
          - type: recall_at_5
            value: 49.271
      - task:
          type: Retrieval
        dataset:
          name: MTEB HotpotQA
          type: hotpotqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 40.108
          - type: map_at_10
            value: 65.846
          - type: map_at_100
            value: 66.691
          - type: map_at_1000
            value: 66.743
          - type: map_at_3
            value: 62.09
          - type: map_at_5
            value: 64.412
          - type: mrr_at_1
            value: 80.216
          - type: mrr_at_10
            value: 85.768
          - type: mrr_at_100
            value: 85.92699999999999
          - type: mrr_at_1000
            value: 85.932
          - type: mrr_at_3
            value: 85.012
          - type: mrr_at_5
            value: 85.495
          - type: ndcg_at_1
            value: 80.216
          - type: ndcg_at_10
            value: 73.833
          - type: ndcg_at_100
            value: 76.68
          - type: ndcg_at_1000
            value: 77.639
          - type: ndcg_at_3
            value: 68.7
          - type: ndcg_at_5
            value: 71.514
          - type: precision_at_1
            value: 80.216
          - type: precision_at_10
            value: 15.616
          - type: precision_at_100
            value: 1.783
          - type: precision_at_1000
            value: 0.191
          - type: precision_at_3
            value: 44.483
          - type: precision_at_5
            value: 28.904999999999998
          - type: recall_at_1
            value: 40.108
          - type: recall_at_10
            value: 78.082
          - type: recall_at_100
            value: 89.129
          - type: recall_at_1000
            value: 95.381
          - type: recall_at_3
            value: 66.725
          - type: recall_at_5
            value: 72.262
      - task:
          type: Classification
        dataset:
          name: MTEB ImdbClassification
          type: mteb/imdb
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 94.3208
          - type: ap
            value: 91.64852216825692
          - type: f1
            value: 94.31672442494217
      - task:
          type: Retrieval
        dataset:
          name: MTEB MSMARCO
          type: msmarco
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 16.954
          - type: map_at_10
            value: 28.605000000000004
          - type: map_at_100
            value: 29.875
          - type: map_at_1000
            value: 29.934
          - type: map_at_3
            value: 24.57
          - type: map_at_5
            value: 26.845000000000002
          - type: mrr_at_1
            value: 17.407
          - type: mrr_at_10
            value: 29.082
          - type: mrr_at_100
            value: 30.309
          - type: mrr_at_1000
            value: 30.361
          - type: mrr_at_3
            value: 25.112000000000002
          - type: mrr_at_5
            value: 27.37
          - type: ndcg_at_1
            value: 17.407
          - type: ndcg_at_10
            value: 35.555
          - type: ndcg_at_100
            value: 41.808
          - type: ndcg_at_1000
            value: 43.277
          - type: ndcg_at_3
            value: 27.291999999999998
          - type: ndcg_at_5
            value: 31.369999999999997
          - type: precision_at_1
            value: 17.407
          - type: precision_at_10
            value: 5.9670000000000005
          - type: precision_at_100
            value: 0.9119999999999999
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 11.939
          - type: precision_at_5
            value: 9.223
          - type: recall_at_1
            value: 16.954
          - type: recall_at_10
            value: 57.216
          - type: recall_at_100
            value: 86.384
          - type: recall_at_1000
            value: 97.64
          - type: recall_at_3
            value: 34.660999999999994
          - type: recall_at_5
            value: 44.484
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (en)
          type: mteb/mtop_domain
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 95.29183766529867
          - type: f1
            value: 95.01282555921513
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (en)
          type: mteb/mtop_intent
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 87.07934336525307
          - type: f1
            value: 69.58693991783085
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (en)
          type: mteb/amazon_massive_intent
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 79.71755211835911
          - type: f1
            value: 77.08207736007755
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (en)
          type: mteb/amazon_massive_scenario
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 81.08607935440484
          - type: f1
            value: 80.71191664406739
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringP2P
          type: mteb/medrxiv-clustering-p2p
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 36.5355083590869
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringS2S
          type: mteb/medrxiv-clustering-s2s
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 37.24173539348128
      - task:
          type: Reranking
        dataset:
          name: MTEB MindSmallReranking
          type: mteb/mind_small
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 32.84293003435578
          - type: mrr
            value: 34.09721970493348
      - task:
          type: Retrieval
        dataset:
          name: MTEB NFCorpus
          type: nfcorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.369
          - type: map_at_10
            value: 14.892
          - type: map_at_100
            value: 18.884999999999998
          - type: map_at_1000
            value: 20.43
          - type: map_at_3
            value: 10.735999999999999
          - type: map_at_5
            value: 12.703000000000001
          - type: mrr_at_1
            value: 50.15500000000001
          - type: mrr_at_10
            value: 59.948
          - type: mrr_at_100
            value: 60.422
          - type: mrr_at_1000
            value: 60.455999999999996
          - type: mrr_at_3
            value: 58.204
          - type: mrr_at_5
            value: 59.35
          - type: ndcg_at_1
            value: 47.678
          - type: ndcg_at_10
            value: 39.050000000000004
          - type: ndcg_at_100
            value: 35.905
          - type: ndcg_at_1000
            value: 44.662
          - type: ndcg_at_3
            value: 44.781
          - type: ndcg_at_5
            value: 42.549
          - type: precision_at_1
            value: 49.226
          - type: precision_at_10
            value: 28.762
          - type: precision_at_100
            value: 8.767999999999999
          - type: precision_at_1000
            value: 2.169
          - type: precision_at_3
            value: 41.796
          - type: precision_at_5
            value: 37.09
          - type: recall_at_1
            value: 6.369
          - type: recall_at_10
            value: 19.842000000000002
          - type: recall_at_100
            value: 37.017
          - type: recall_at_1000
            value: 68.444
          - type: recall_at_3
            value: 12.446
          - type: recall_at_5
            value: 15.525
      - task:
          type: Retrieval
        dataset:
          name: MTEB NQ
          type: nq
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 39.663
          - type: map_at_10
            value: 56.252
          - type: map_at_100
            value: 57.018
          - type: map_at_1000
            value: 57.031
          - type: map_at_3
            value: 52.020999999999994
          - type: map_at_5
            value: 54.626
          - type: mrr_at_1
            value: 44.699
          - type: mrr_at_10
            value: 58.819
          - type: mrr_at_100
            value: 59.351
          - type: mrr_at_1000
            value: 59.358
          - type: mrr_at_3
            value: 55.615
          - type: mrr_at_5
            value: 57.598000000000006
          - type: ndcg_at_1
            value: 44.699
          - type: ndcg_at_10
            value: 63.873999999999995
          - type: ndcg_at_100
            value: 66.973
          - type: ndcg_at_1000
            value: 67.23700000000001
          - type: ndcg_at_3
            value: 56.25599999999999
          - type: ndcg_at_5
            value: 60.44199999999999
          - type: precision_at_1
            value: 44.699
          - type: precision_at_10
            value: 10.075000000000001
          - type: precision_at_100
            value: 1.185
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 25.202999999999996
          - type: precision_at_5
            value: 17.584
          - type: recall_at_1
            value: 39.663
          - type: recall_at_10
            value: 84.313
          - type: recall_at_100
            value: 97.56700000000001
          - type: recall_at_1000
            value: 99.44
          - type: recall_at_3
            value: 64.938
          - type: recall_at_5
            value: 74.515
      - task:
          type: Retrieval
        dataset:
          name: MTEB QuoraRetrieval
          type: quora
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 69.708
          - type: map_at_10
            value: 83.86099999999999
          - type: map_at_100
            value: 84.513
          - type: map_at_1000
            value: 84.53
          - type: map_at_3
            value: 80.854
          - type: map_at_5
            value: 82.757
          - type: mrr_at_1
            value: 80.15
          - type: mrr_at_10
            value: 86.70400000000001
          - type: mrr_at_100
            value: 86.81400000000001
          - type: mrr_at_1000
            value: 86.815
          - type: mrr_at_3
            value: 85.658
          - type: mrr_at_5
            value: 86.37599999999999
          - type: ndcg_at_1
            value: 80.17
          - type: ndcg_at_10
            value: 87.7
          - type: ndcg_at_100
            value: 88.979
          - type: ndcg_at_1000
            value: 89.079
          - type: ndcg_at_3
            value: 84.71600000000001
          - type: ndcg_at_5
            value: 86.385
          - type: precision_at_1
            value: 80.17
          - type: precision_at_10
            value: 13.369
          - type: precision_at_100
            value: 1.53
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.123
          - type: precision_at_5
            value: 24.498
          - type: recall_at_1
            value: 69.708
          - type: recall_at_10
            value: 95.17099999999999
          - type: recall_at_100
            value: 99.529
          - type: recall_at_1000
            value: 99.97500000000001
          - type: recall_at_3
            value: 86.761
          - type: recall_at_5
            value: 91.34
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClustering
          type: mteb/reddit-clustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 63.005610557842786
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClusteringP2P
          type: mteb/reddit-clustering-p2p
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 65.85897055439158
      - task:
          type: Retrieval
        dataset:
          name: MTEB SCIDOCS
          type: scidocs
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.388
          - type: map_at_10
            value: 14.087
          - type: map_at_100
            value: 16.618
          - type: map_at_1000
            value: 16.967
          - type: map_at_3
            value: 9.8
          - type: map_at_5
            value: 11.907
          - type: mrr_at_1
            value: 26.5
          - type: mrr_at_10
            value: 37.905
          - type: mrr_at_100
            value: 39.053
          - type: mrr_at_1000
            value: 39.091
          - type: mrr_at_3
            value: 34.567
          - type: mrr_at_5
            value: 36.307
          - type: ndcg_at_1
            value: 26.5
          - type: ndcg_at_10
            value: 23.06
          - type: ndcg_at_100
            value: 32.164
          - type: ndcg_at_1000
            value: 37.574000000000005
          - type: ndcg_at_3
            value: 21.623
          - type: ndcg_at_5
            value: 18.95
          - type: precision_at_1
            value: 26.5
          - type: precision_at_10
            value: 12.030000000000001
          - type: precision_at_100
            value: 2.5020000000000002
          - type: precision_at_1000
            value: 0.379
          - type: precision_at_3
            value: 20.200000000000003
          - type: precision_at_5
            value: 16.64
          - type: recall_at_1
            value: 5.388
          - type: recall_at_10
            value: 24.375
          - type: recall_at_100
            value: 50.818
          - type: recall_at_1000
            value: 76.86699999999999
          - type: recall_at_3
            value: 12.273
          - type: recall_at_5
            value: 16.858
      - task:
          type: STS
        dataset:
          name: MTEB SICK-R
          type: mteb/sickr-sts
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 85.09465497223438
          - type: cos_sim_spearman
            value: 80.55601111843897
          - type: euclidean_pearson
            value: 82.40135168520864
          - type: euclidean_spearman
            value: 80.05606361845396
          - type: manhattan_pearson
            value: 82.24092291787754
          - type: manhattan_spearman
            value: 79.89739846820373
      - task:
          type: STS
        dataset:
          name: MTEB STS12
          type: mteb/sts12-sts
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 81.14210597635189
          - type: cos_sim_spearman
            value: 73.69447481152118
          - type: euclidean_pearson
            value: 75.08507068029972
          - type: euclidean_spearman
            value: 71.04077458564372
          - type: manhattan_pearson
            value: 75.64918699307383
          - type: manhattan_spearman
            value: 71.61677355593945
      - task:
          type: STS
        dataset:
          name: MTEB STS13
          type: mteb/sts13-sts
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 85.41396417076866
          - type: cos_sim_spearman
            value: 85.82245898186092
          - type: euclidean_pearson
            value: 85.58527168297935
          - type: euclidean_spearman
            value: 85.94613250938504
          - type: manhattan_pearson
            value: 85.88114899068759
          - type: manhattan_spearman
            value: 86.42494392145366
      - task:
          type: STS
        dataset:
          name: MTEB STS14
          type: mteb/sts14-sts
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 83.7431948980468
          - type: cos_sim_spearman
            value: 82.05114289801895
          - type: euclidean_pearson
            value: 83.06116666914892
          - type: euclidean_spearman
            value: 81.82060562251957
          - type: manhattan_pearson
            value: 83.1858437025367
          - type: manhattan_spearman
            value: 82.09604293088852
      - task:
          type: STS
        dataset:
          name: MTEB STS15
          type: mteb/sts15-sts
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 88.455985912287
          - type: cos_sim_spearman
            value: 88.8044343107975
          - type: euclidean_pearson
            value: 87.155336804123
          - type: euclidean_spearman
            value: 87.79371420531842
          - type: manhattan_pearson
            value: 87.5784376507174
          - type: manhattan_spearman
            value: 88.429877987816
      - task:
          type: STS
        dataset:
          name: MTEB STS16
          type: mteb/sts16-sts
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 85.1631000795076
          - type: cos_sim_spearman
            value: 86.20042158061408
          - type: euclidean_pearson
            value: 84.88605965960737
          - type: euclidean_spearman
            value: 85.45926745772432
          - type: manhattan_pearson
            value: 85.18333987666729
          - type: manhattan_spearman
            value: 85.86048911387192
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-en)
          type: mteb/sts17-crosslingual-sts
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 91.51301667439836
          - type: cos_sim_spearman
            value: 91.46469919011143
          - type: euclidean_pearson
            value: 91.15157693133415
          - type: euclidean_spearman
            value: 91.02656400119739
          - type: manhattan_pearson
            value: 91.08411259466446
          - type: manhattan_spearman
            value: 90.84339904461068
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (en)
          type: mteb/sts22-crosslingual-sts
          config: en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 69.08993728439704
          - type: cos_sim_spearman
            value: 69.20885645170797
          - type: euclidean_pearson
            value: 69.65638507632245
          - type: euclidean_spearman
            value: 68.69831912688514
          - type: manhattan_pearson
            value: 69.86621764969294
          - type: manhattan_spearman
            value: 69.05446631856769
      - task:
          type: STS
        dataset:
          name: MTEB STSBenchmark
          type: mteb/stsbenchmark-sts
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 86.96149243197495
          - type: cos_sim_spearman
            value: 87.43145597912833
          - type: euclidean_pearson
            value: 86.6762329641158
          - type: euclidean_spearman
            value: 86.67085254401809
          - type: manhattan_pearson
            value: 87.06412701458164
          - type: manhattan_spearman
            value: 87.10197412769807
      - task:
          type: Reranking
        dataset:
          name: MTEB SciDocsRR
          type: mteb/scidocs-reranking
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 86.43440918697488
          - type: mrr
            value: 96.3954826945023
      - task:
          type: Retrieval
        dataset:
          name: MTEB SciFact
          type: scifact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 60.494
          - type: map_at_10
            value: 72.074
          - type: map_at_100
            value: 72.475
          - type: map_at_1000
            value: 72.483
          - type: map_at_3
            value: 68.983
          - type: map_at_5
            value: 71.161
          - type: mrr_at_1
            value: 63.666999999999994
          - type: mrr_at_10
            value: 73.31299999999999
          - type: mrr_at_100
            value: 73.566
          - type: mrr_at_1000
            value: 73.574
          - type: mrr_at_3
            value: 71.111
          - type: mrr_at_5
            value: 72.72800000000001
          - type: ndcg_at_1
            value: 63.666999999999994
          - type: ndcg_at_10
            value: 77.024
          - type: ndcg_at_100
            value: 78.524
          - type: ndcg_at_1000
            value: 78.842
          - type: ndcg_at_3
            value: 72.019
          - type: ndcg_at_5
            value: 75.22999999999999
          - type: precision_at_1
            value: 63.666999999999994
          - type: precision_at_10
            value: 10.2
          - type: precision_at_100
            value: 1.103
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 28.111000000000004
          - type: precision_at_5
            value: 19
          - type: recall_at_1
            value: 60.494
          - type: recall_at_10
            value: 90.8
          - type: recall_at_100
            value: 97.333
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 77.644
          - type: recall_at_5
            value: 85.694
      - task:
          type: PairClassification
        dataset:
          name: MTEB SprintDuplicateQuestions
          type: mteb/sprintduplicatequestions-pairclassification
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.68415841584158
          - type: cos_sim_ap
            value: 91.23713949701548
          - type: cos_sim_f1
            value: 83.70221327967808
          - type: cos_sim_precision
            value: 84.21052631578947
          - type: cos_sim_recall
            value: 83.2
          - type: dot_accuracy
            value: 99.5
          - type: dot_ap
            value: 79.46312132270363
          - type: dot_f1
            value: 72.75320970042794
          - type: dot_precision
            value: 69.35630099728014
          - type: dot_recall
            value: 76.5
          - type: euclidean_accuracy
            value: 99.69108910891089
          - type: euclidean_ap
            value: 90.9016163254649
          - type: euclidean_f1
            value: 83.91752577319586
          - type: euclidean_precision
            value: 86.59574468085106
          - type: euclidean_recall
            value: 81.39999999999999
          - type: manhattan_accuracy
            value: 99.7039603960396
          - type: manhattan_ap
            value: 91.5593806619311
          - type: manhattan_f1
            value: 85.08124076809453
          - type: manhattan_precision
            value: 83.80213385063045
          - type: manhattan_recall
            value: 86.4
          - type: max_accuracy
            value: 99.7039603960396
          - type: max_ap
            value: 91.5593806619311
          - type: max_f1
            value: 85.08124076809453
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClustering
          type: mteb/stackexchange-clustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 74.40806543281603
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClusteringP2P
          type: mteb/stackexchange-clustering-p2p
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 38.51757703316821
      - task:
          type: Reranking
        dataset:
          name: MTEB StackOverflowDupQuestions
          type: mteb/stackoverflowdupquestions-reranking
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 54.33475593449746
          - type: mrr
            value: 55.3374474789916
      - task:
          type: Summarization
        dataset:
          name: MTEB SummEval
          type: mteb/summeval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.249926396023596
          - type: cos_sim_spearman
            value: 29.820375700458158
          - type: dot_pearson
            value: 28.820307635930355
          - type: dot_spearman
            value: 28.824273052746825
      - task:
          type: Retrieval
        dataset:
          name: MTEB TRECCOVID
          type: trec-covid
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.233
          - type: map_at_10
            value: 2.061
          - type: map_at_100
            value: 12.607
          - type: map_at_1000
            value: 30.031000000000002
          - type: map_at_3
            value: 0.6669999999999999
          - type: map_at_5
            value: 1.091
          - type: mrr_at_1
            value: 88
          - type: mrr_at_10
            value: 93.067
          - type: mrr_at_100
            value: 93.067
          - type: mrr_at_1000
            value: 93.067
          - type: mrr_at_3
            value: 92.667
          - type: mrr_at_5
            value: 93.067
          - type: ndcg_at_1
            value: 84
          - type: ndcg_at_10
            value: 81.072
          - type: ndcg_at_100
            value: 62.875
          - type: ndcg_at_1000
            value: 55.641
          - type: ndcg_at_3
            value: 85.296
          - type: ndcg_at_5
            value: 84.10499999999999
          - type: precision_at_1
            value: 88
          - type: precision_at_10
            value: 83.39999999999999
          - type: precision_at_100
            value: 63.7
          - type: precision_at_1000
            value: 24.622
          - type: precision_at_3
            value: 88
          - type: precision_at_5
            value: 87.2
          - type: recall_at_1
            value: 0.233
          - type: recall_at_10
            value: 2.188
          - type: recall_at_100
            value: 15.52
          - type: recall_at_1000
            value: 52.05499999999999
          - type: recall_at_3
            value: 0.6859999999999999
          - type: recall_at_5
            value: 1.1440000000000001
      - task:
          type: Retrieval
        dataset:
          name: MTEB Touche2020
          type: webis-touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.19
          - type: map_at_10
            value: 11.491999999999999
          - type: map_at_100
            value: 17.251
          - type: map_at_1000
            value: 18.795
          - type: map_at_3
            value: 6.146
          - type: map_at_5
            value: 8.113
          - type: mrr_at_1
            value: 44.897999999999996
          - type: mrr_at_10
            value: 56.57
          - type: mrr_at_100
            value: 57.348
          - type: mrr_at_1000
            value: 57.357
          - type: mrr_at_3
            value: 52.041000000000004
          - type: mrr_at_5
            value: 55.408
          - type: ndcg_at_1
            value: 40.816
          - type: ndcg_at_10
            value: 27.968
          - type: ndcg_at_100
            value: 39
          - type: ndcg_at_1000
            value: 50.292
          - type: ndcg_at_3
            value: 31.256
          - type: ndcg_at_5
            value: 28.855999999999998
          - type: precision_at_1
            value: 44.897999999999996
          - type: precision_at_10
            value: 24.285999999999998
          - type: precision_at_100
            value: 7.898
          - type: precision_at_1000
            value: 1.541
          - type: precision_at_3
            value: 30.612000000000002
          - type: precision_at_5
            value: 27.346999999999998
          - type: recall_at_1
            value: 3.19
          - type: recall_at_10
            value: 17.954
          - type: recall_at_100
            value: 48.793
          - type: recall_at_1000
            value: 83.357
          - type: recall_at_3
            value: 6.973999999999999
          - type: recall_at_5
            value: 10.391
      - task:
          type: Classification
        dataset:
          name: MTEB ToxicConversationsClassification
          type: mteb/toxic_conversations_50k
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 70.89139999999999
          - type: ap
            value: 15.562539739828049
          - type: f1
            value: 55.38685639741247
      - task:
          type: Classification
        dataset:
          name: MTEB TweetSentimentExtractionClassification
          type: mteb/tweet_sentiment_extraction
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 62.48160724391625
          - type: f1
            value: 62.76700854121342
      - task:
          type: Clustering
        dataset:
          name: MTEB TwentyNewsgroupsClustering
          type: mteb/twentynewsgroups-clustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 57.157071531498275
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterSemEval2015
          type: mteb/twittersemeval2015-pairclassification
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 87.15503367705789
          - type: cos_sim_ap
            value: 77.20584529783206
          - type: cos_sim_f1
            value: 71.3558088770313
          - type: cos_sim_precision
            value: 66.02333931777379
          - type: cos_sim_recall
            value: 77.62532981530343
          - type: dot_accuracy
            value: 83.10186564940096
          - type: dot_ap
            value: 64.34160146443133
          - type: dot_f1
            value: 63.23048153342683
          - type: dot_precision
            value: 56.75618967687789
          - type: dot_recall
            value: 71.37203166226914
          - type: euclidean_accuracy
            value: 86.94045419324074
          - type: euclidean_ap
            value: 76.08471767931738
          - type: euclidean_f1
            value: 71.41248592518455
          - type: euclidean_precision
            value: 67.90387818225078
          - type: euclidean_recall
            value: 75.30343007915567
          - type: manhattan_accuracy
            value: 86.80932228646361
          - type: manhattan_ap
            value: 76.03862870753638
          - type: manhattan_f1
            value: 71.2660917385327
          - type: manhattan_precision
            value: 67.70363334124912
          - type: manhattan_recall
            value: 75.22427440633246
          - type: max_accuracy
            value: 87.15503367705789
          - type: max_ap
            value: 77.20584529783206
          - type: max_f1
            value: 71.41248592518455
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterURLCorpus
          type: mteb/twitterurlcorpus-pairclassification
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 89.42639810610471
          - type: cos_sim_ap
            value: 86.45196525133669
          - type: cos_sim_f1
            value: 79.25172592977508
          - type: cos_sim_precision
            value: 76.50852802063925
          - type: cos_sim_recall
            value: 82.19895287958116
          - type: dot_accuracy
            value: 87.03768385919976
          - type: dot_ap
            value: 80.86465404774172
          - type: dot_f1
            value: 74.50351637940457
          - type: dot_precision
            value: 70.72293324109305
          - type: dot_recall
            value: 78.71111795503542
          - type: euclidean_accuracy
            value: 89.29056545193464
          - type: euclidean_ap
            value: 86.25102188096191
          - type: euclidean_f1
            value: 79.05038057267126
          - type: euclidean_precision
            value: 74.681550472538
          - type: euclidean_recall
            value: 83.9621188789652
          - type: manhattan_accuracy
            value: 89.34877944657896
          - type: manhattan_ap
            value: 86.35336214205911
          - type: manhattan_f1
            value: 79.20192588269623
          - type: manhattan_precision
            value: 75.24951483227058
          - type: manhattan_recall
            value: 83.59254696643055
          - type: max_accuracy
            value: 89.42639810610471
          - type: max_ap
            value: 86.45196525133669
          - type: max_f1
            value: 79.25172592977508
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

GritLM/GritLM-8x7B - GGUF

This repo contains GGUF format model files for GritLM/GritLM-8x7B.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template

<s><|user|>
{prompt}
<|assistant|>

Model file specification

Filename Quant type File Size Description
GritLM-8x7B-Q2_K.gguf Q2_K 17.311 GB smallest, significant quality loss - not recommended for most purposes
GritLM-8x7B-Q3_K_S.gguf Q3_K_S 20.433 GB very small, high quality loss
GritLM-8x7B-Q3_K_M.gguf Q3_K_M 22.546 GB very small, high quality loss
GritLM-8x7B-Q3_K_L.gguf Q3_K_L 24.170 GB small, substantial quality loss
GritLM-8x7B-Q4_0.gguf Q4_0 26.444 GB legacy; small, very high quality loss - prefer using Q3_K_M
GritLM-8x7B-Q4_K_S.gguf Q4_K_S 26.746 GB small, greater quality loss
GritLM-8x7B-Q4_K_M.gguf Q4_K_M 28.448 GB medium, balanced quality - recommended
GritLM-8x7B-Q5_0.gguf Q5_0 32.231 GB legacy; medium, balanced quality - prefer using Q4_K_M
GritLM-8x7B-Q5_K_S.gguf Q5_K_S 32.231 GB large, low quality loss - recommended
GritLM-8x7B-Q5_K_M.gguf Q5_K_M 33.230 GB large, very low quality loss - recommended
GritLM-8x7B-Q6_K.gguf Q6_K 38.381 GB very large, extremely low quality loss
GritLM-8x7B-Q8_0.gguf Q8_0 49.626 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/GritLM-8x7B-GGUF --include "GritLM-8x7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/GritLM-8x7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'