morriszms's picture
Upload folder using huggingface_hub
22e1590 verified
metadata
license: cc-by-nc-4.0
tags:
  - TensorBlock
  - GGUF
base_model: cloudyu/Mixtral_7Bx2_MoE
model-index:
  - name: Mixtral_7Bx2_MoE
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 71.25
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Mixtral_7Bx2_MoE
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 87.45
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Mixtral_7Bx2_MoE
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.98
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Mixtral_7Bx2_MoE
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 67.23
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Mixtral_7Bx2_MoE
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 81.22
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Mixtral_7Bx2_MoE
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 68.46
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Mixtral_7Bx2_MoE
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

cloudyu/Mixtral_7Bx2_MoE - GGUF

This repo contains GGUF format model files for cloudyu/Mixtral_7Bx2_MoE.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template


Model file specification

Filename Quant type File Size Description
Mixtral_7Bx2_MoE-Q2_K.gguf Q2_K 4.434 GB smallest, significant quality loss - not recommended for most purposes
Mixtral_7Bx2_MoE-Q3_K_S.gguf Q3_K_S 5.204 GB very small, high quality loss
Mixtral_7Bx2_MoE-Q3_K_M.gguf Q3_K_M 5.780 GB very small, high quality loss
Mixtral_7Bx2_MoE-Q3_K_L.gguf Q3_K_L 6.268 GB small, substantial quality loss
Mixtral_7Bx2_MoE-Q4_0.gguf Q4_0 6.781 GB legacy; small, very high quality loss - prefer using Q3_K_M
Mixtral_7Bx2_MoE-Q4_K_S.gguf Q4_K_S 6.837 GB small, greater quality loss
Mixtral_7Bx2_MoE-Q4_K_M.gguf Q4_K_M 7.248 GB medium, balanced quality - recommended
Mixtral_7Bx2_MoE-Q5_0.gguf Q5_0 8.265 GB legacy; medium, balanced quality - prefer using Q4_K_M
Mixtral_7Bx2_MoE-Q5_K_S.gguf Q5_K_S 8.265 GB large, low quality loss - recommended
Mixtral_7Bx2_MoE-Q5_K_M.gguf Q5_K_M 8.506 GB large, very low quality loss - recommended
Mixtral_7Bx2_MoE-Q6_K.gguf Q6_K 9.842 GB very large, extremely low quality loss
Mixtral_7Bx2_MoE-Q8_0.gguf Q8_0 12.746 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Mixtral_7Bx2_MoE-GGUF --include "Mixtral_7Bx2_MoE-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Mixtral_7Bx2_MoE-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'