metadata
language:
- pt
license: apache-2.0
library_name: transformers
tags:
- text-generation-inference
- TensorBlock
- GGUF
datasets:
- nicholasKluge/instruct-aira-dataset-v3
- cnmoro/GPT4-500k-Augmented-PTBR-Clean
- rhaymison/orca-math-portuguese-64k
- nicholasKluge/reward-aira-dataset
metrics:
- perplexity
pipeline_tag: text-generation
widget:
- text: >-
<instruction>Cite algumas bandas de rock brasileiras
famosas.</instruction>
example_title: Exemplo
- text: >-
<instruction>Invente uma história sobre um encanador com poderes
mágicos.</instruction>
example_title: Exemplo
- text: >-
<instruction>Qual cidade é a capital do estado do Rio Grande do
Sul?</instruction>
example_title: Exemplo
- text: >-
<instruction>Diga o nome de uma maravilha culinária característica da
cosinha Portuguesa?</instruction>
example_title: Exemplo
inference:
parameters:
repetition_penalty: 1.2
temperature: 0.2
top_k: 20
top_p: 0.2
max_new_tokens: 150
co2_eq_emissions:
emissions: 42270
source: CodeCarbon
training_type: pre-training
geographical_location: Germany
hardware_used: NVIDIA A100-SXM4-80GB
base_model: TucanoBR/Tucano-2b4-Instruct
model-index:
- name: Tucano-2b4-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: CALAME-PT
type: NOVA-vision-language/calame-pt
split: all
args:
num_few_shot: 0
metrics:
- type: acc
value: 57.66
name: accuracy
source:
url: https://huggingface.co/datasets/NOVA-vision-language/calame-pt
name: Context-Aware LAnguage Modeling Evaluation for Portuguese
- task:
type: text-generation
name: Text Generation
dataset:
name: LAMBADA-PT
type: TucanoBR/lambada-pt
split: train
args:
num_few_shot: 0
metrics:
- type: acc
value: 39.92
name: accuracy
source:
url: https://huggingface.co/datasets/TucanoBR/lambada-pt
name: LAMBADA-PT
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 20.43
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 22.81
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 24.83
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 43.39
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 10
metrics:
- type: pearson
value: 6.31
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 43.97
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 27.7
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 29.18
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia-temp/tweetsentbr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 43.11
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: ARC-Challenge (PT)
type: arc_pt
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 32.05
name: normalized accuracy
source:
url: https://github.com/nlp-uoregon/mlmm-evaluation
name: Evaluation Framework for Multilingual Large Language Models
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (PT)
type: hellaswag_pt
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 48.28
name: normalized accuracy
source:
url: https://github.com/nlp-uoregon/mlmm-evaluation
name: Evaluation Framework for Multilingual Large Language Models
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (PT)
type: truthfulqa_pt
args:
num_few_shot: 0
metrics:
- type: mc2
value: 38.44
name: bleurt
source:
url: https://github.com/nlp-uoregon/mlmm-evaluation
name: Evaluation Framework for Multilingual Large Language Models
- task:
type: text-generation
name: Text Generation
dataset:
name: Alpaca-Eval (PT)
type: alpaca_eval_pt
args:
num_few_shot: 0
metrics:
- type: lc_winrate
value: 13
name: length controlled winrate
source:
url: https://github.com/tatsu-lab/alpaca_eval
name: AlpacaEval
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
TucanoBR/Tucano-2b4-Instruct - GGUF
This repo contains GGUF format model files for TucanoBR/Tucano-2b4-Instruct.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
<instruction>{prompt}</instruction>
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Tucano-2b4-Instruct-Q2_K.gguf | Q2_K | 0.933 GB | smallest, significant quality loss - not recommended for most purposes |
Tucano-2b4-Instruct-Q3_K_S.gguf | Q3_K_S | 1.084 GB | very small, high quality loss |
Tucano-2b4-Instruct-Q3_K_M.gguf | Q3_K_M | 1.197 GB | very small, high quality loss |
Tucano-2b4-Instruct-Q3_K_L.gguf | Q3_K_L | 1.297 GB | small, substantial quality loss |
Tucano-2b4-Instruct-Q4_0.gguf | Q4_0 | 1.397 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Tucano-2b4-Instruct-Q4_K_S.gguf | Q4_K_S | 1.408 GB | small, greater quality loss |
Tucano-2b4-Instruct-Q4_K_M.gguf | Q4_K_M | 1.484 GB | medium, balanced quality - recommended |
Tucano-2b4-Instruct-Q5_0.gguf | Q5_0 | 1.693 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Tucano-2b4-Instruct-Q5_K_S.gguf | Q5_K_S | 1.693 GB | large, low quality loss - recommended |
Tucano-2b4-Instruct-Q5_K_M.gguf | Q5_K_M | 1.737 GB | large, very low quality loss - recommended |
Tucano-2b4-Instruct-Q6_K.gguf | Q6_K | 2.007 GB | very large, extremely low quality loss |
Tucano-2b4-Instruct-Q8_0.gguf | Q8_0 | 2.599 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Tucano-2b4-Instruct-GGUF --include "Tucano-2b4-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Tucano-2b4-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'