metadata
language:
- en
license: apache-2.0
tags:
- maths
- gpt2
- mathgpt2
- trl
- sft
- TensorBlock
- GGUF
datasets:
- meta-math/MetaMathQA
- ArtifactAI/arxiv-math-instruct-50k
pipeline_tag: text-generation
widget:
- text: Which motion is formed by an incident particle?
example_title: Example 1
- text: What type of diffusional modeling is used for diffusion?
example_title: Example 2
base_model: Sharathhebbar24/math_gpt2_sft
model-index:
- name: math_gpt2_sft
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 22.87
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 30.41
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.06
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 37.62
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.54
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.68
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/math_gpt2_sft
name: Open LLM Leaderboard
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
Sharathhebbar24/math_gpt2_sft - GGUF
This repo contains GGUF format model files for Sharathhebbar24/math_gpt2_sft.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
math_gpt2_sft-Q2_K.gguf | Q2_K | 0.081 GB | smallest, significant quality loss - not recommended for most purposes |
math_gpt2_sft-Q3_K_S.gguf | Q3_K_S | 0.090 GB | very small, high quality loss |
math_gpt2_sft-Q3_K_M.gguf | Q3_K_M | 0.098 GB | very small, high quality loss |
math_gpt2_sft-Q3_K_L.gguf | Q3_K_L | 0.102 GB | small, substantial quality loss |
math_gpt2_sft-Q4_0.gguf | Q4_0 | 0.107 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
math_gpt2_sft-Q4_K_S.gguf | Q4_K_S | 0.107 GB | small, greater quality loss |
math_gpt2_sft-Q4_K_M.gguf | Q4_K_M | 0.113 GB | medium, balanced quality - recommended |
math_gpt2_sft-Q5_0.gguf | Q5_0 | 0.122 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
math_gpt2_sft-Q5_K_S.gguf | Q5_K_S | 0.122 GB | large, low quality loss - recommended |
math_gpt2_sft-Q5_K_M.gguf | Q5_K_M | 0.127 GB | large, very low quality loss - recommended |
math_gpt2_sft-Q6_K.gguf | Q6_K | 0.138 GB | very large, extremely low quality loss |
math_gpt2_sft-Q8_0.gguf | Q8_0 | 0.178 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/math_gpt2_sft-GGUF --include "math_gpt2_sft-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/math_gpt2_sft-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'