system's picture
system HF staff
Update README.md
53c9c50
|
raw
history blame
632 Bytes
## TextAttack Model Card
This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack
and the yelp_polarity dataset loaded using the `nlp` library. The model was fine-tuned
for 5 epochs with a batch size of 16, a learning
rate of 5e-05, and a maximum sequence length of 256.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.9699473684210527, as measured by the
eval set accuracy, found after 4 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).