tgrhn's picture
End of training
286c530 verified
metadata
license: mit
base_model: pyannote/segmentation-3.0
tags:
  - speaker-diarization
  - speaker-segmentation
  - generated_from_trainer
datasets:
  - diarizers-community/simsamu
model-index:
  - name: speaker-segmentation-fine-tuned-simsamu-2
    results: []

speaker-segmentation-fine-tuned-simsamu-2

This model is a fine-tuned version of pyannote/segmentation-3.0 on the diarizers-community/simsamu default dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2428
  • Der: 0.0861
  • False Alarm: 0.0245
  • Missed Detection: 0.0384
  • Confusion: 0.0232

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Der False Alarm Missed Detection Confusion
0.2179 1.0 111 0.2259 0.0951 0.0239 0.0486 0.0227
0.1694 2.0 222 0.2379 0.0930 0.0230 0.0466 0.0234
0.1559 3.0 333 0.2305 0.0898 0.0223 0.0431 0.0244
0.149 4.0 444 0.2323 0.0893 0.0246 0.0398 0.0249
0.1416 5.0 555 0.2351 0.0884 0.0243 0.0399 0.0243
0.1369 6.0 666 0.2458 0.0904 0.0266 0.0370 0.0268
0.1367 7.0 777 0.2410 0.0882 0.0204 0.0434 0.0244
0.1306 8.0 888 0.2400 0.0866 0.0240 0.0393 0.0234
0.1301 9.0 999 0.2422 0.0860 0.0243 0.0387 0.0230
0.1276 10.0 1110 0.2428 0.0861 0.0245 0.0384 0.0232

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.19.1