SetFit with intfloat/e5-small-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses intfloat/e5-small-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: intfloat/e5-small-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("query: 好的,那就先这样,李先生,再见。")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 6.2674 | 18 |
Label | Training Sample Count |
---|---|
0 | 85 |
1 | 87 |
Training Hyperparameters
- batch_size: (4, 1)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: undersampling
- body_learning_rate: (1e-06, 1e-06)
- head_learning_rate: 8e-06
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.05
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- run_name: intfloat/e5-small-v2
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0003 | 1 | 0.3851 | - |
0.0135 | 50 | 0.3455 | - |
0.0270 | 100 | 0.3359 | 0.3522 |
0.0406 | 150 | 0.3459 | - |
0.0541 | 200 | 0.3645 | 0.3221 |
0.0676 | 250 | 0.3264 | - |
0.0811 | 300 | 0.2955 | 0.2759 |
0.0946 | 350 | 0.2546 | - |
0.1082 | 400 | 0.2253 | 0.2373 |
0.1217 | 450 | 0.2004 | - |
0.1352 | 500 | 0.3578 | 0.2318 |
0.1487 | 550 | 0.2628 | - |
0.1622 | 600 | 0.2614 | 0.2222 |
0.1758 | 650 | 0.2095 | - |
0.1893 | 700 | 0.2345 | 0.2196 |
0.2028 | 750 | 0.1842 | - |
0.2163 | 800 | 0.1942 | 0.2326 |
0.2299 | 850 | 0.218 | - |
0.2434 | 900 | 0.3134 | 0.2422 |
0.2569 | 950 | 0.1639 | - |
0.2704 | 1000 | 0.2138 | 0.23 |
0.2839 | 1050 | 0.3102 | - |
0.2975 | 1100 | 0.1347 | 0.2348 |
0.3110 | 1150 | 0.1698 | - |
0.3245 | 1200 | 0.2467 | 0.2547 |
0.3380 | 1250 | 0.1064 | - |
0.3515 | 1300 | 0.1757 | 0.2383 |
0.3651 | 1350 | 0.1093 | - |
0.3786 | 1400 | 0.2869 | 0.2393 |
0.3921 | 1450 | 0.2519 | - |
0.4056 | 1500 | 0.2344 | 0.2323 |
0.4191 | 1550 | 0.2804 | - |
0.4327 | 1600 | 0.1082 | 0.2403 |
0.4462 | 1650 | 0.2025 | - |
0.4597 | 1700 | 0.2213 | 0.2547 |
0.4732 | 1750 | 0.1302 | - |
0.4867 | 1800 | 0.1517 | 0.2345 |
0.5003 | 1850 | 0.2779 | - |
0.5138 | 1900 | 0.1918 | 0.2339 |
0.5273 | 1950 | 0.1132 | - |
0.5408 | 2000 | 0.2075 | 0.253 |
0.5544 | 2050 | 0.2488 | - |
0.5679 | 2100 | 0.0579 | 0.2526 |
0.5814 | 2150 | 0.3789 | - |
0.5949 | 2200 | 0.167 | 0.2573 |
0.6084 | 2250 | 0.199 | - |
0.6220 | 2300 | 0.0824 | 0.2258 |
0.6355 | 2350 | 0.1396 | - |
0.6490 | 2400 | 0.3674 | 0.2527 |
0.6625 | 2450 | 0.2448 | - |
0.6760 | 2500 | 0.1623 | 0.249 |
0.6896 | 2550 | 0.2198 | - |
0.7031 | 2600 | 0.118 | 0.2613 |
0.7166 | 2650 | 0.1511 | - |
0.7301 | 2700 | 0.1162 | 0.2351 |
0.7436 | 2750 | 0.1393 | - |
0.7572 | 2800 | 0.1845 | 0.2418 |
0.7707 | 2850 | 0.1821 | - |
0.7842 | 2900 | 0.1762 | 0.254 |
0.7977 | 2950 | 0.0477 | - |
0.8112 | 3000 | 0.1928 | 0.2633 |
0.8248 | 3050 | 0.1363 | - |
0.8383 | 3100 | 0.0811 | 0.261 |
0.8518 | 3150 | 0.0734 | - |
0.8653 | 3200 | 0.0917 | 0.2202 |
0.8789 | 3250 | 0.3027 | - |
0.8924 | 3300 | 0.1528 | 0.2767 |
0.9059 | 3350 | 0.2234 | - |
0.9194 | 3400 | 0.1048 | 0.2667 |
0.9329 | 3450 | 0.1865 | - |
0.9465 | 3500 | 0.051 | 0.2612 |
0.9600 | 3550 | 0.0218 | - |
0.9735 | 3600 | 0.1524 | 0.243 |
0.9870 | 3650 | 0.1759 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.11
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.0
- PyTorch: 2.3.1
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for thegenerativegeneration/stay_or_go_conversation_classifier_xs
Base model
intfloat/e5-small-v2