adithya8
pushing roberta-large trained on Schone Achievement dataset
97fb653
metadata
language:
  - en
license: mit
base_model: roberta-large
tags:
  - generated_from_trainer
datasets:
  - schone-achievement
model-index:
  - name: final
    results: []

final

This model is a fine-tuned version of roberta-large on the GLUE SCHONE_ACH dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0846
  • Roc Auc: 0.9888

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 128
  • eval_batch_size: 256
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Roc Auc
0.185 0.9985 332 0.1574 0.9583
0.1607 2.0 665 0.1283 0.9730
0.1357 2.9985 997 0.1071 0.9818
0.1214 4.0 1330 0.0978 0.9870
0.1011 4.9925 1660 0.0846 0.9888

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1