DQN Agent playing LunarLander-v2
This is a trained model of a DQN agent playing LunarLander-v2 using the stable-baselines3 library and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo dqn --env LunarLander-v2 -orga theicfire -f logs/
python enjoy.py --algo dqn --env LunarLander-v2 -f logs/
Training (with the RL Zoo)
python train.py --algo dqn --env LunarLander-v2 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo dqn --env LunarLander-v2 -f logs/ -orga theicfire
Hyperparameters
OrderedDict([('batch_size', 128),
('buffer_size', 50000),
('exploration_final_eps', 0.1),
('exploration_fraction', 0.12),
('gamma', 0.99),
('gradient_steps', -1),
('learning_rate', 0.00063),
('learning_starts', 0),
('n_timesteps', 100000.0),
('policy', 'MlpPolicy'),
('policy_kwargs', 'dict(net_arch=[256, 256])'),
('target_update_interval', 250),
('train_freq', 4),
('normalize', False)])
- Downloads last month
- 2
Evaluation results
- mean_reward on LunarLander-v2self-reported199.35 +/- 83.29