|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- axolotl |
|
pipeline_tag: summarization |
|
--- |
|
|
|
|
|
--- |
|
Qwen2-1.5B-Instruct finetuned on my own synthetic data for summarization task for 2 epochs |
|
|
|
More info on the project at my github: https://github.com/thepowerfuldeez/qwen2_1_5b_summarize |
|
|
|
### Usage |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct") |
|
model = AutoModelForCausalLM.from_pretrained("thepowerfuldeez/Qwen2-1.5B-Summarize", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
load_in_4bit=True, attn_implementation="flash_attention_2") |
|
|
|
text = <YOUR_TEXT> |
|
messages = [ |
|
{"role": "system", "content": "You are helpful AI assistant."}, |
|
{"role": "user", "content": f"Summarize following text: \n{text}"}, |
|
] |
|
input_ids = tokenizer.apply_chat_template(messages, return_tensors='pt') |
|
new_tokens = model.generate(input_ids, max_new_tokens=1024)[0][len(input_ids[0]):] |
|
summary = tokenizer.decode(new_tokens, skip_special_tokens=True) |
|
``` |
|
|
|
### Dataset |
|
Train split is [here](https://huggingface.co/datasets/thepowefuldeez/Qwen-summarize-dataset-train) |
|
|
|
### Metrics |
|
|
|
#### BERTScore |
|
|Model name | Dataset size | Result | |
|
| ------------------ | ------------ | ---------- | |
|
|Qwen2-1.5B-Instruct | - | 0.07 | |
|
|Qwen2-1.5B-Summarize| 8000 | **0.14** | |
|
|Qwen2-1.5B-Summarize| 20500 | In progress| |
|
|
|
|
|
I have used BERTScore from [official](https://github.com/Tiiiger/bert_score/tree/master) implementation with `microsoft/deberta-xlarge-mnli` model. |
|
Then I sampled 32 inputs from test set (longer sentences to summarize) and generated summaries. I have reference summaries generated from stronger, Qwen2-72B-Instruct model, which I used as targets for metric. |
|
|
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |