Update README.md
Browse files
README.md
CHANGED
@@ -21,13 +21,60 @@ model-index:
|
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
-
#
|
|
|
|
|
25 |
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
-
##
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
31 |
|
32 |
```python
|
33 |
# Load a saved LunarLander model from the Hub and retrain
|
@@ -62,7 +109,7 @@ mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, d
|
|
62 |
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
|
63 |
```
|
64 |
|
65 |
-
|
66 |
|
67 |
```python
|
68 |
notebook_login()
|
@@ -94,4 +141,17 @@ package_to_hub(model=model, # Our trained model
|
|
94 |
eval_env=eval_env, # Evaluation Environment
|
95 |
repo_id=repo_id, # id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2
|
96 |
commit_message=commit_message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
```
|
|
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# Train your first Deep Reinforcement Learning Agent 🤖
|
25 |
+
![Cover](https://github.com/huggingface/deep-rl-class/blob/main/unit1/assets/img/thumbnail.png?raw=true)
|
26 |
+
|
27 |
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
28 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
29 |
|
30 |
+
## 1. Install package
|
31 |
+
```python
|
32 |
+
from IPython.display import clear_output
|
33 |
+
!apt install swig cmake
|
34 |
+
!pip install -r https://raw.githubusercontent.com/huggingface/deep-rl-class/main/notebooks/unit1/requirements-unit1.txt
|
35 |
+
!sudo apt-get update
|
36 |
+
!apt install python-opengl
|
37 |
+
!apt install ffmpeg
|
38 |
+
!apt install xvfb
|
39 |
+
!pip3 install pyvirtualdisplay
|
40 |
+
clear_output()
|
41 |
+
```
|
42 |
+
|
43 |
+
Restart notebook
|
44 |
+
```
|
45 |
+
import os
|
46 |
+
os.kill(os.getpid(), 9)
|
47 |
+
```
|
48 |
+
|
49 |
+
## 2. Use model
|
50 |
+
|
51 |
+
```python
|
52 |
+
from huggingface_sb3 import load_from_hub
|
53 |
+
repo_id = "thien1892/LunarLander-v2-ppo-5m"
|
54 |
+
filename = "ppo-LunarLander-v2-5m.zip" # The model filename.zip
|
55 |
+
|
56 |
+
# When the model was trained on Python 3.8 the pickle protocol is 5
|
57 |
+
# But Python 3.6, 3.7 use protocol 4
|
58 |
+
# In order to get compatibility we need to:
|
59 |
+
# 1. Install pickle5 (we done it at the beginning of the colab)
|
60 |
+
# 2. Create a custom empty object we pass as parameter to PPO.load()
|
61 |
+
custom_objects = {
|
62 |
+
"learning_rate": 0.0,
|
63 |
+
"lr_schedule": lambda _: 0.0,
|
64 |
+
"clip_range": lambda _: 0.0,
|
65 |
+
}
|
66 |
+
|
67 |
+
checkpoint = load_from_hub(repo_id, filename)
|
68 |
+
model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True)
|
69 |
+
```
|
70 |
+
Evaluate
|
71 |
+
```python
|
72 |
+
eval_env = gym.make("LunarLander-v2")
|
73 |
+
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
|
74 |
+
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
|
75 |
+
```
|
76 |
|
77 |
+
## 3. Re-train model (choice 1)
|
78 |
|
79 |
```python
|
80 |
# Load a saved LunarLander model from the Hub and retrain
|
|
|
109 |
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
|
110 |
```
|
111 |
|
112 |
+
Pust to HF hub
|
113 |
|
114 |
```python
|
115 |
notebook_login()
|
|
|
141 |
eval_env=eval_env, # Evaluation Environment
|
142 |
repo_id=repo_id, # id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2
|
143 |
commit_message=commit_message)
|
144 |
+
```
|
145 |
+
|
146 |
+
## 4. Re-train model (choice 2)
|
147 |
+
- Change `--repo_id` become your repo id :)
|
148 |
+
- `--id_retrain` and `--filename_retrain` in order to load my trained model, you can change to your trained model
|
149 |
+
```python
|
150 |
+
!python train_and_push.py --repo_id "thien1892/LunarLander-v2-ppo-v3" \
|
151 |
+
--commit_message "retrain model from hub 5m" \
|
152 |
+
--id_retrain "thien1892/LunarLander-v2-ppo-v5" \
|
153 |
+
--filename_retrain "ppo-LunarLander-v2.zip" \
|
154 |
+
--total_timesteps 5000000 \
|
155 |
+
--learning_rate 1e-6 \
|
156 |
+
--n_envs 64
|
157 |
```
|