Edit model card

distilbert-base-uncased-distilled-clinc

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2772
  • Accuracy: 0.9535

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 74

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.8866 1.0 318 2.0716 0.7316
1.5472 2.0 636 0.9602 0.8774
0.7257 3.0 954 0.5149 0.9174
0.3992 4.0 1272 0.3806 0.9377
0.2851 5.0 1590 0.3391 0.9429
0.2386 6.0 1908 0.3253 0.9442
0.2158 7.0 2226 0.3147 0.9455
0.2045 8.0 2544 0.3096 0.9477
0.1969 9.0 2862 0.3044 0.9468
0.1919 10.0 3180 0.3006 0.9458
0.1887 11.0 3498 0.3028 0.9461
0.1864 12.0 3816 0.2960 0.9494
0.1836 13.0 4134 0.2947 0.9455
0.1818 14.0 4452 0.2959 0.9484
0.1805 15.0 4770 0.2901 0.9506
0.1798 16.0 5088 0.2972 0.9461
0.1782 17.0 5406 0.2961 0.9461
0.1768 18.0 5724 0.2931 0.95
0.1761 19.0 6042 0.2915 0.9474
0.1749 20.0 6360 0.2895 0.9481
0.1743 21.0 6678 0.2889 0.9484
0.1735 22.0 6996 0.2888 0.9487
0.173 23.0 7314 0.2873 0.9503
0.1727 24.0 7632 0.2844 0.9510
0.1723 25.0 7950 0.2877 0.9477
0.1717 26.0 8268 0.2851 0.9503
0.1712 27.0 8586 0.2884 0.9503
0.1707 28.0 8904 0.2839 0.9519
0.1704 29.0 9222 0.2853 0.9490
0.17 30.0 9540 0.2824 0.9516
0.1698 31.0 9858 0.2854 0.9474
0.1696 32.0 10176 0.2838 0.9487
0.1692 33.0 10494 0.2821 0.9506
0.1691 34.0 10812 0.2825 0.9516
0.1688 35.0 11130 0.2833 0.9506
0.1686 36.0 11448 0.2836 0.9503
0.1685 37.0 11766 0.2820 0.9506
0.1685 38.0 12084 0.2826 0.9506
0.1679 39.0 12402 0.2821 0.9519
0.168 40.0 12720 0.2798 0.9513
0.1677 41.0 13038 0.2811 0.9519
0.1673 42.0 13356 0.2829 0.9510
0.1674 43.0 13674 0.2814 0.9526
0.1673 44.0 13992 0.2806 0.9523
0.1671 45.0 14310 0.2805 0.9523
0.1666 46.0 14628 0.2800 0.9513
0.1668 47.0 14946 0.2803 0.9523
0.1666 48.0 15264 0.2789 0.9519
0.1668 49.0 15582 0.2805 0.9510
0.1662 50.0 15900 0.2788 0.9529
0.1663 51.0 16218 0.2813 0.9516
0.1663 52.0 16536 0.2783 0.9516
0.1661 53.0 16854 0.2790 0.9513
0.1658 54.0 17172 0.2794 0.9526
0.1659 55.0 17490 0.2802 0.9532
0.1661 56.0 17808 0.2796 0.9526
0.1654 57.0 18126 0.2793 0.9516
0.1658 58.0 18444 0.2794 0.9523
0.1654 59.0 18762 0.2784 0.9510
0.1658 60.0 19080 0.2805 0.9526
0.1653 61.0 19398 0.2786 0.9523
0.1655 62.0 19716 0.2777 0.9513
0.1653 63.0 20034 0.2775 0.9532
0.1652 64.0 20352 0.2782 0.9519
0.1652 65.0 20670 0.2785 0.9526
0.1654 66.0 20988 0.2786 0.9523
0.1649 67.0 21306 0.2788 0.9526
0.165 68.0 21624 0.2781 0.9523
0.165 69.0 21942 0.2775 0.9519
0.165 70.0 22260 0.2773 0.9523
0.165 71.0 22578 0.2769 0.9526
0.1651 72.0 22896 0.2770 0.9532
0.1648 73.0 23214 0.2773 0.9535
0.1652 74.0 23532 0.2772 0.9535

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
67.1M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for thom126f/distilbert-base-uncased-distilled-clinc

Finetuned
(6780)
this model