metadata
language:
- zh
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- thomas0104/nan_tw_soap_opera
metrics:
- wer
base_model: openai/whisper-large-v2
model-index:
- name: openai/whisper-large-v2
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: thomas0104/nan_tw_soap_opera nan-tw
type: thomas0104/nan_tw_soap_opera
config: nan-tw
split: test
metrics:
- type: cer
value: 63.42
name: Cer
openai/large_v2_nan_tw_so_short_30s
This model is a fine-tuned version of openai/whisper-large-v2 on the thomas0104/nan_tw_soap_opera nan-tw dataset. It achieves the following results on the evaluation set:
- Loss: 1.3322
- Wer: 343.5629
- Cer: 63.42
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.1133 | 1.0 | 1000 | 1.3322 | 343.5629 | 416.4573 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2