tiennvcs's picture
Fine tuning BERT large for DocVQA
8bf070f
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: bert-large-uncased-finetuned-docvqa
    results:
      - task:
          name: Question Answering
          type: question-answering

bert-large-uncased-finetuned-docvqa

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6367

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 250500
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss
2.5228 0.05 1000 2.6645
2.4909 0.1 2000 2.8985
2.1679 0.16 3000 2.3551
1.9451 0.21 4000 2.2226
1.6814 0.26 5000 2.1590
1.8868 0.31 6000 2.6197
1.6618 0.36 7000 2.3632
1.8313 0.41 8000 2.4519
1.7017 0.47 9000 2.2682
1.8169 0.52 10000 2.4486
1.7074 0.57 11000 2.3862
1.7674 0.62 12000 2.1801
1.8134 0.67 13000 2.3032
1.8334 0.73 14000 2.4205
1.6819 0.78 15000 2.2398
1.5846 0.83 16000 2.3834
1.6758 0.88 17000 1.9683
1.6303 0.93 18000 2.3297
1.5652 0.98 19000 2.0581
1.3045 1.04 20000 2.4950
1.2393 1.09 21000 2.6622
1.1526 1.14 22000 2.3749
1.2631 1.19 23000 2.3915
1.1846 1.24 24000 2.2592
1.2731 1.3 25000 2.4239
1.3057 1.35 26000 2.2920
1.134 1.4 27000 2.3107
1.2017 1.45 28000 2.4271
1.2202 1.5 29000 2.1814
1.2179 1.56 30000 2.3365
1.2359 1.61 31000 2.1256
1.1964 1.66 32000 2.1720
1.269 1.71 33000 2.4363
1.1812 1.76 34000 2.2372
1.2187 1.81 35000 2.2318
1.1805 1.87 36000 2.3693
1.1458 1.92 37000 2.5128
1.1958 1.97 38000 2.1311
0.8924 2.02 39000 2.4635
0.869 2.07 40000 2.8231
0.8333 2.13 41000 2.6762
0.9194 2.18 42000 2.4588
0.8089 2.23 43000 2.6443
0.8612 2.28 44000 2.4300
0.7981 2.33 45000 2.7418
0.9765 2.38 46000 2.6543
0.8646 2.44 47000 2.5990
1.0316 2.49 48000 2.4625
0.9862 2.54 49000 2.4691
1.027 2.59 50000 2.4156
0.9412 2.64 51000 2.4204
0.9353 2.7 52000 2.4933
0.9509 2.75 53000 2.4708
0.9351 2.8 54000 2.5351
0.9968 2.85 55000 2.2506
1.025 2.9 56000 2.6317
1.627 2.95 57000 2.7843
0.9294 3.01 58000 2.9396
0.6043 3.06 59000 3.1560
0.7903 3.11 60000 2.8330
0.7373 3.16 61000 2.9422
0.6499 3.21 62000 3.0948
0.6411 3.27 63000 2.7900
0.625 3.32 64000 2.5268
0.6264 3.37 65000 2.8701
0.6143 3.42 66000 3.2544
0.6286 3.47 67000 2.6208
0.739 3.53 68000 2.8107
0.5981 3.58 69000 2.8073
0.6502 3.63 70000 2.6293
0.6548 3.68 71000 2.9501
0.7243 3.73 72000 2.7917
0.598 3.78 73000 2.9341
0.6159 3.84 74000 2.7629
0.5905 3.89 75000 2.6441
0.6393 3.94 76000 2.6660
0.677 3.99 77000 2.7616
0.3281 4.04 78000 3.6873
0.4524 4.1 79000 3.3441
0.3994 4.15 80000 3.3129
0.4686 4.2 81000 3.1813
0.5293 4.25 82000 2.9088
0.3961 4.3 83000 3.0765
0.4406 4.35 84000 3.1254
0.401 4.41 85000 3.2415
0.4594 4.46 86000 3.0691
0.4523 4.51 87000 3.0493
0.4719 4.56 88000 3.1352
0.4895 4.61 89000 2.8991
0.423 4.67 90000 3.1738
0.3984 4.72 91000 3.1862
0.4206 4.77 92000 3.1213
0.4587 4.82 93000 3.0030
0.381 4.87 94000 3.3218
0.4138 4.92 95000 3.1529
0.4003 4.98 96000 3.1375
0.2098 5.03 97000 3.7443
0.2334 5.08 98000 3.7359
0.2534 5.13 99000 3.7814
0.3067 5.18 100000 3.7128
0.2363 5.24 101000 3.6091
0.2652 5.29 102000 3.4015
0.3311 5.34 103000 3.4793
0.2344 5.39 104000 3.6792
0.2741 5.44 105000 3.5385
0.2896 5.5 106000 3.8118
0.2071 5.55 107000 3.8690
0.3023 5.6 108000 3.7087
0.3299 5.65 109000 3.4925
0.1943 5.7 110000 3.6739
0.2488 5.75 111000 3.7614
0.3138 5.81 112000 3.5156
0.2555 5.86 113000 3.6056
0.2918 5.91 114000 3.6533
0.2751 5.96 115000 3.6367

Framework versions

  • Transformers 4.10.0
  • Pytorch 1.8.0+cu101
  • Datasets 1.11.0
  • Tokenizers 0.10.3