fix: use correct rounding
#5
by
wdevazelhes
- opened
README.md
CHANGED
@@ -1,79 +1,137 @@
|
|
1 |
---
|
2 |
language:
|
3 |
- en
|
4 |
-
- fr
|
5 |
- es
|
6 |
- pt
|
7 |
tags:
|
8 |
- falcon3
|
9 |
-
license: other
|
10 |
-
license_name: falcon-llm-license
|
11 |
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
|
12 |
-
library_name: transformers
|
13 |
---
|
14 |
|
15 |
-
<div align="center">
|
16 |
-
<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
|
17 |
-
</div>
|
18 |
|
19 |
-
# Falcon3-1B-Base
|
20 |
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
⚠️ **This is a raw, pretrained model, which should be further finetuned using SFT, RLHF, continued pretraining, etc. for most use cases.**
|
28 |
|
29 |
-
|
30 |
-
- Architecture
|
31 |
-
- Transformer-based causal decoder-only architecture
|
32 |
-
- 18 decoder blocks
|
33 |
-
- Grouped Query Attention (GQA) for faster inference: 8 query heads and 4 key-value heads
|
34 |
-
- Wider head dimension: 256
|
35 |
-
- High RoPE value to support long context understanding: 1000042
|
36 |
-
- Uses SwiGLU and RMSNorm
|
37 |
-
- 4K context length
|
38 |
-
- 131K vocab size
|
39 |
-
- Pruned and healed using larger Falcon models (3B and 7B respectively) on only 80 Gigatokens of datasets comprising of web, code, STEM, high quality and multilingual data using 256 H100 GPU chips
|
40 |
-
- Supports EN, FR, ES, PT
|
41 |
-
- Developed by [Technology Innovation Institute](https://www.tii.ae)
|
42 |
-
- License: TII Falcon-LLM License 2.0
|
43 |
-
- Model Release Date: December 2024
|
44 |
|
|
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
<details>
|
49 |
<summary> Click to expand </summary>
|
50 |
|
51 |
```python
|
52 |
import torch
|
53 |
-
from transformers import
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
```
|
64 |
|
65 |
</details>
|
66 |
|
67 |
-
<br>
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
|
|
75 |
|
|
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
|
78 |
<colgroup>
|
79 |
<col style="width: 10%;">
|
@@ -81,6 +139,7 @@ We report in the following table our internal pipeline benchmarks.
|
|
81 |
<col style="width: 7%;">
|
82 |
<col style="width: 7%;">
|
83 |
<col style="width: 7%;">
|
|
|
84 |
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
|
85 |
</colgroup>
|
86 |
<thead>
|
@@ -90,6 +149,7 @@ We report in the following table our internal pipeline benchmarks.
|
|
90 |
<th>Llama-3.2-1B</th>
|
91 |
<th>Qwen2.5-1.5B</th>
|
92 |
<th>SmolLM2-1.7B</th>
|
|
|
93 |
<th>Falcon3-1B-Base</th>
|
94 |
</tr>
|
95 |
</thead>
|
@@ -98,52 +158,59 @@ We report in the following table our internal pipeline benchmarks.
|
|
98 |
<td rowspan="3">General</td>
|
99 |
<td>MMLU (5-shot)</td>
|
100 |
<td>31.1</td>
|
101 |
-
<td
|
102 |
<td>50.1</td>
|
|
|
103 |
<td>42.5</td>
|
104 |
</tr>
|
105 |
<tr>
|
106 |
<td>MMLU-PRO (5-shot)</td>
|
107 |
<td>11.7</td>
|
108 |
-
<td
|
109 |
<td>21.3</td>
|
|
|
110 |
<td>16.1</td>
|
111 |
</tr>
|
112 |
<tr>
|
113 |
<td>IFEval</td>
|
114 |
<td>14.8</td>
|
115 |
-
<td
|
116 |
<td>24.2</td>
|
|
|
117 |
<td>25.2</td>
|
118 |
</tr>
|
119 |
<tr>
|
120 |
<td rowspan="2">Math</td>
|
121 |
<td>GSM8K (5-shot)</td>
|
122 |
<td>6.6</td>
|
123 |
-
<td
|
124 |
<td>31.0</td>
|
|
|
125 |
<td>34.3</td>
|
126 |
</tr>
|
127 |
<tr>
|
128 |
<td>MATH Lvl-5 (4-shot)</td>
|
129 |
<td>0.2</td>
|
130 |
-
<td
|
131 |
<td>1.4</td>
|
|
|
132 |
<td>2.2</td>
|
133 |
</tr>
|
134 |
<tr>
|
135 |
<td rowspan="4">Reasoning</td>
|
136 |
<td>Arc Challenge (25-shot)</td>
|
137 |
<td>40.2</td>
|
138 |
-
<td
|
139 |
<td>54.1</td>
|
|
|
140 |
<td>48.1</td>
|
141 |
</tr>
|
142 |
<tr>
|
143 |
<td>GPQA (0-shot)</td>
|
144 |
<td>24.2</td>
|
145 |
<td>28.1</td>
|
146 |
-
<td
|
|
|
147 |
<td>28.1</td>
|
148 |
</tr>
|
149 |
<tr>
|
@@ -151,13 +218,15 @@ We report in the following table our internal pipeline benchmarks.
|
|
151 |
<td>34.5</td>
|
152 |
<td>35.5</td>
|
153 |
<td>34.7</td>
|
154 |
-
<td
|
|
|
155 |
</tr>
|
156 |
<tr>
|
157 |
<td>BBH (3-shot)</td>
|
158 |
<td>31.2</td>
|
159 |
-
<td
|
160 |
<td>34.2</td>
|
|
|
161 |
<td>36.0</td>
|
162 |
</tr>
|
163 |
<tr>
|
@@ -165,49 +234,38 @@ We report in the following table our internal pipeline benchmarks.
|
|
165 |
<td>PIQA (0-shot)</td>
|
166 |
<td>74.5</td>
|
167 |
<td>76.0</td>
|
168 |
-
<td
|
|
|
169 |
<td>74.5</td>
|
170 |
</tr>
|
171 |
<tr>
|
172 |
<td>SciQ (0-shot)</td>
|
173 |
<td>88.5</td>
|
174 |
-
<td
|
175 |
<td>90.8</td>
|
|
|
176 |
<td>91.1</td>
|
177 |
</tr>
|
178 |
<tr>
|
179 |
<td>Winogrande (0-shot)</td>
|
180 |
<td>60.4</td>
|
181 |
<td>63.0</td>
|
182 |
-
<td
|
|
|
183 |
<td>61.2</td>
|
184 |
</tr>
|
185 |
<tr>
|
186 |
<td>OpenbookQA (0-shot)</td>
|
187 |
<td>37.4</td>
|
188 |
<td>40.4</td>
|
189 |
-
<td
|
|
|
190 |
<td>41.0</td>
|
191 |
</tr>
|
192 |
</tbody>
|
193 |
</table>
|
194 |
|
195 |
-
## Useful links
|
196 |
-
- View our [release blogpost](https://huggingface.co/blog/falcon3).
|
197 |
-
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.
|
198 |
|
199 |
-
## Technical Report
|
200 |
-
Coming soon....
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
```
|
206 |
-
@misc{Falcon3,
|
207 |
-
title = {The Falcon 3 Family of Open Models},
|
208 |
-
url = {https://huggingface.co/blog/falcon3},
|
209 |
-
author = {Falcon-LLM Team},
|
210 |
-
month = {December},
|
211 |
-
year = {2024}
|
212 |
-
}
|
213 |
-
```
|
|
|
1 |
---
|
2 |
language:
|
3 |
- en
|
|
|
4 |
- es
|
5 |
- pt
|
6 |
tags:
|
7 |
- falcon3
|
8 |
+
license: other
|
9 |
+
license_name: falcon-llm-license
|
10 |
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
|
|
|
11 |
---
|
12 |
|
|
|
|
|
|
|
13 |
|
|
|
14 |
|
15 |
+
# Table of Contents
|
16 |
|
17 |
+
0. [TL;DR](#TL;DR)
|
18 |
+
1. [Model Details](#model-details)
|
19 |
+
2. [Usage](#usage)
|
20 |
+
3. [Training Details](#training-details)
|
21 |
+
4. [Evaluation](#evaluation)
|
22 |
|
|
|
23 |
|
24 |
+
# TL;DR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Model Details
|
27 |
|
28 |
+
⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.**
|
29 |
+
|
30 |
+
## Model Description
|
31 |
+
|
32 |
+
- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
|
33 |
+
- **Model type:** Causal decoder-only
|
34 |
+
- **Architecture:** Transformer-base
|
35 |
+
- **Language(s) (NLP):** Mainly English
|
36 |
+
- **License:** TII Falcon-LLM License 2.0
|
37 |
+
|
38 |
+
<br>
|
39 |
+
|
40 |
+
# Usage
|
41 |
+
|
42 |
+
Find below some example scripts on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source):
|
43 |
+
|
44 |
+
## Using the Pytorch model with 🤗 transformers
|
45 |
+
|
46 |
+
### Running the model on a CPU
|
47 |
+
|
48 |
+
<details>
|
49 |
+
<summary> Click to expand </summary>
|
50 |
+
|
51 |
+
```python
|
52 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
53 |
+
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
|
55 |
+
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base")
|
56 |
+
|
57 |
+
input_text = "Question: How many hours in one day? Answer: "
|
58 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
59 |
+
|
60 |
+
outputs = model.generate(input_ids)
|
61 |
+
print(tokenizer.decode(outputs[0]))
|
62 |
+
```
|
63 |
+
|
64 |
+
</details>
|
65 |
+
|
66 |
+
### Running the model on a GPU
|
67 |
+
|
68 |
+
<details>
|
69 |
+
<summary> Click to expand </summary>
|
70 |
+
|
71 |
+
```python
|
72 |
+
# pip install accelerate
|
73 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
74 |
+
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
|
76 |
+
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", device_map="auto")
|
77 |
+
|
78 |
+
input_text = "Question: How many hours in one day? Answer: "
|
79 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
80 |
+
|
81 |
+
outputs = model.generate(input_ids)
|
82 |
+
print(tokenizer.decode(outputs[0]))
|
83 |
+
```
|
84 |
+
|
85 |
+
</details>
|
86 |
+
|
87 |
+
### Running the model on a GPU using `torch.compile`
|
88 |
|
89 |
<details>
|
90 |
<summary> Click to expand </summary>
|
91 |
|
92 |
```python
|
93 |
import torch
|
94 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
95 |
+
|
96 |
+
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
|
97 |
+
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", torch_dtype=torch.bfloat16).to(0)
|
98 |
+
|
99 |
+
model = torch.compile(model)
|
100 |
+
|
101 |
+
input_text = "Question: How many hours in one day? Answer: "
|
102 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
103 |
+
|
104 |
+
outputs = model.generate(input_ids)
|
105 |
+
print(tokenizer.decode(outputs[0]))
|
106 |
```
|
107 |
|
108 |
</details>
|
109 |
|
|
|
110 |
|
111 |
+
# Training Details
|
112 |
+
|
113 |
+
## Training Data
|
114 |
+
|
115 |
+
Falcon3-7B is trained on 15 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data.
|
116 |
|
117 |
+
## Training Procedure
|
118 |
|
119 |
+
Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
120 |
|
121 |
+
### Training Hyperparameters
|
122 |
+
|
123 |
+
| **Hyperparameter** | **Value** | **Comment** |
|
124 |
+
|--------------------|------------|---------------------------------------|
|
125 |
+
| Precision | `bfloat16` | |
|
126 |
+
| Optimizer | AdamW | |
|
127 |
+
| Max learning rate | 6e-4 | Following a WSD (warmup-stable-decay) |
|
128 |
+
| | | learning rate scheduler |
|
129 |
+
| Weight decay | 1e-1 | |
|
130 |
+
| z-loss | 1e-4 | |
|
131 |
+
| Batch size | Variable | Batch size was gradually increased |
|
132 |
+
| | | during the training |
|
133 |
+
|
134 |
+
# Evaluation
|
135 |
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
|
136 |
<colgroup>
|
137 |
<col style="width: 10%;">
|
|
|
139 |
<col style="width: 7%;">
|
140 |
<col style="width: 7%;">
|
141 |
<col style="width: 7%;">
|
142 |
+
<col style="width: 7%;">
|
143 |
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
|
144 |
</colgroup>
|
145 |
<thead>
|
|
|
149 |
<th>Llama-3.2-1B</th>
|
150 |
<th>Qwen2.5-1.5B</th>
|
151 |
<th>SmolLM2-1.7B</th>
|
152 |
+
<th>gemma-2-2b</th>
|
153 |
<th>Falcon3-1B-Base</th>
|
154 |
</tr>
|
155 |
</thead>
|
|
|
158 |
<td rowspan="3">General</td>
|
159 |
<td>MMLU (5-shot)</td>
|
160 |
<td>31.1</td>
|
161 |
+
<td>61.0</td>
|
162 |
<td>50.1</td>
|
163 |
+
<td>53.0</td>
|
164 |
<td>42.5</td>
|
165 |
</tr>
|
166 |
<tr>
|
167 |
<td>MMLU-PRO (5-shot)</td>
|
168 |
<td>11.7</td>
|
169 |
+
<td>28.4</td>
|
170 |
<td>21.3</td>
|
171 |
+
<td>22.1</td>
|
172 |
<td>16.1</td>
|
173 |
</tr>
|
174 |
<tr>
|
175 |
<td>IFEval</td>
|
176 |
<td>14.8</td>
|
177 |
+
<td>26.0</td>
|
178 |
<td>24.2</td>
|
179 |
+
<td>20.3</td>
|
180 |
<td>25.2</td>
|
181 |
</tr>
|
182 |
<tr>
|
183 |
<td rowspan="2">Math</td>
|
184 |
<td>GSM8K (5-shot)</td>
|
185 |
<td>6.6</td>
|
186 |
+
<td>62.2</td>
|
187 |
<td>31.0</td>
|
188 |
+
<td>25.5</td>
|
189 |
<td>34.3</td>
|
190 |
</tr>
|
191 |
<tr>
|
192 |
<td>MATH Lvl-5 (4-shot)</td>
|
193 |
<td>0.2</td>
|
194 |
+
<td>6.7</td>
|
195 |
<td>1.4</td>
|
196 |
+
<td>2.6</td>
|
197 |
<td>2.2</td>
|
198 |
</tr>
|
199 |
<tr>
|
200 |
<td rowspan="4">Reasoning</td>
|
201 |
<td>Arc Challenge (25-shot)</td>
|
202 |
<td>40.2</td>
|
203 |
+
<td>54.8</td>
|
204 |
<td>54.1</td>
|
205 |
+
<td>53.7</td>
|
206 |
<td>48.1</td>
|
207 |
</tr>
|
208 |
<tr>
|
209 |
<td>GPQA (0-shot)</td>
|
210 |
<td>24.2</td>
|
211 |
<td>28.1</td>
|
212 |
+
<td>28.9</td>
|
213 |
+
<td>25.5</td>
|
214 |
<td>28.1</td>
|
215 |
</tr>
|
216 |
<tr>
|
|
|
218 |
<td>34.5</td>
|
219 |
<td>35.5</td>
|
220 |
<td>34.7</td>
|
221 |
+
<td>42.7</td>
|
222 |
+
<td>41.9</td>
|
223 |
</tr>
|
224 |
<tr>
|
225 |
<td>BBH (3-shot)</td>
|
226 |
<td>31.2</td>
|
227 |
+
<td>41.1</td>
|
228 |
<td>34.2</td>
|
229 |
+
<td>36.8</td>
|
230 |
<td>36.0</td>
|
231 |
</tr>
|
232 |
<tr>
|
|
|
234 |
<td>PIQA (0-shot)</td>
|
235 |
<td>74.5</td>
|
236 |
<td>76.0</td>
|
237 |
+
<td>77.5</td>
|
238 |
+
<td>79.2</td>
|
239 |
<td>74.5</td>
|
240 |
</tr>
|
241 |
<tr>
|
242 |
<td>SciQ (0-shot)</td>
|
243 |
<td>88.5</td>
|
244 |
+
<td>93.1</td>
|
245 |
<td>90.8</td>
|
246 |
+
<td>95.7</td>
|
247 |
<td>91.1</td>
|
248 |
</tr>
|
249 |
<tr>
|
250 |
<td>Winogrande (0-shot)</td>
|
251 |
<td>60.4</td>
|
252 |
<td>63.0</td>
|
253 |
+
<td>66.1</td>
|
254 |
+
<td>68.6</td>
|
255 |
<td>61.2</td>
|
256 |
</tr>
|
257 |
<tr>
|
258 |
<td>OpenbookQA (0-shot)</td>
|
259 |
<td>37.4</td>
|
260 |
<td>40.4</td>
|
261 |
+
<td>44.0</td>
|
262 |
+
<td>41.8</td>
|
263 |
<td>41.0</td>
|
264 |
</tr>
|
265 |
</tbody>
|
266 |
</table>
|
267 |
|
|
|
|
|
|
|
268 |
|
|
|
|
|
269 |
|
270 |
+
|
271 |
+
# Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|