File size: 6,375 Bytes
2b69b8f
 
 
8b9bebc
 
 
2b69b8f
 
e37f587
2465d9c
 
 
2b69b8f
 
a7daa48
2b69b8f
a7daa48
2b69b8f
a7daa48
 
2b69b8f
a7daa48
 
0753ac9
a7daa48
0753ac9
 
 
15015d2
a7daa48
 
 
 
 
 
 
 
2b69b8f
2abf5a8
a7daa48
2b69b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15015d2
2b69b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7daa48
 
2abf5a8
2b69b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15015d2
 
 
2b69b8f
 
 
15015d2
 
 
2b69b8f
 
 
15015d2
 
 
2b69b8f
 
15015d2
2b69b8f
15015d2
 
 
 
 
 
 
 
 
2b69b8f
 
 
15015d2
 
 
2b69b8f
 
15015d2
2b69b8f
15015d2
 
 
2b69b8f
 
 
15015d2
 
 
 
 
 
 
 
 
2b69b8f
 
 
15015d2
 
 
2b69b8f
 
 
15015d2
 
 
 
 
 
 
 
 
2b69b8f
 
 
 
15015d2
 
 
2b69b8f
 
 
15015d2
 
 
2b69b8f
 
 
15015d2
 
 
2b69b8f
 
 
15015d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b69b8f
 
 
 
 
 
a7daa48
2b69b8f
 
 
7f590ee
2b69b8f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
---
language:
- en
- fr
- es
- pt
tags:
- falcon3
base_model: tiiuae/Falcon3-7B-Base
license: other 
license_name: falcon-llm-license 
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
---

# Falcon3-7B-Instruct

**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.

This repository contains the **Falcon3-7B-Instruct**. It achieves state of art results (at release's time) on reasoning, language understanding, instruction following, code and mathematics tasks.
Falcon3-7B-Instruct supports 4 languages (english, french, spanish, portuguese) and a context length up to 32K.

## Model Details
- Architecture
  - Transformer based causal decoder only architecture
  - 28 decoder blocks
  - Grouped query attention (GQA) for faster inference: 12 query heads and 4 KV heads
  - Wider head dimension: 256
  - High RoPE value to support long context understanding: 1000042
  - Uses SwiGLU and RMSNorm
  - 32k context length
  - 131k vocab size
- Pretrained on 14 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 2048 H100 GPU chips
- Postrained on 1.2 million samples of STEM, conversations, code, safety and function call data
- Supports EN, FR, ES, PT
- Developed by [Technology Innovation Institute](https://www.tii.ae)
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024


## Getting started

<details>
<summary> Click to expand </summary>

```python
from transformers import AutoTokenizer, AutoModelForCausalLM


from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "tiiuae/Falcon3-7B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"]
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many hours in one day?"
messages = [
    {"role": "system", "content": "You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=1024
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

</details>

<br>

# Benchmarks
We report in the following table our internal pipeline benchmarks:

<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
    <colgroup>
        <col style="width: 10%;">
        <col style="width: 10%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
    </colgroup>
    <thead>
        <tr>
            <th>Category</th>
            <th>Benchmark</th>
            <th>Llama-3.1-8B-Instruct</th>
            <th>Qwen2.5-7B-Instruct</th>
            <th>Falcon3-7B-Instruct</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td rowspan="3">General</td>
            <td>MMLU (5-shot)</td>
            <td>55.9</td>
            <td><b>72.4</b></td>
            <td>68</td>
        </tr>
        <tr>
            <td>MMLU-PRO (5-shot)</td>
            <td>21.8</td>
            <td>35.8</td>
            <td><b>40.7</b></td>
        </tr>
        <tr>
            <td>IFEval</td>
            <td><b>78.8</b></td>
            <td>74.7</td>
            <td>76.5</td>
        </tr>
        <tr>
            <td rowspan="3">Math</td>
            <td>GSM8K (5-shot)</td>
            <td>19.2</td>
            <td>33.7</td>
            <td><b>78.8</b></td>
        </tr>
        <tr>
            <td>GSM8k (8-shot, COT)</td>
            <td>79.8</td>
            <td>72.7</td>
            <td><b>80.9</b></td>
        </tr>
        <tr>
            <td>MATH(4-shot)</td>
            <td>10.4</td>
            <td>26</td>
            <td><b>33.1</b></td>
        </tr>
        <tr>
            <td rowspan="6">Reasoning</td>
            <td>Arc Challenge (25-shot)</td>
            <td>46.6</td>
            <td>55.7</td>
            <td><b>65.9</b></td>
        </tr>
        <tr>
            <td>GPQA (0-shot)</td>
            <td><b>33.6</b></td>
            <td>31.9</td>
            <td>32</td>
        </tr>
        <tr>
            <td>GPQA (0-shot, COT)</td>
            <td>9.6</td>
            <td>13.8</td>
            <td><b>22.3</b></td>
        </tr>
        <tr>
            <td>MUSR (0-shot)</td>
            <td>38.6</td>
            <td>40.7</td>
            <td><b>46.4</b></td>
        </tr>
        <tr>
            <td>BBH (3-shot)</td>
            <td>43.7</td>
            <td><b>53.9</b></td>
            <td>52.4</td>
        </tr>
        <tr>
            <td>BBH (3-shot, COT)</td>
            <td>6.7</td>
            <td>21.2</td>
            <td><b>69.3</b></td>
        </tr>
        <tr>
            <td rowspan="4">CommonSense Understanding</td>
            <td>PIQA (0-shot)</td>
            <td><b>78.9</b></td>
            <td>73.7</td>
            <td>78.8</td>
        </tr>
        <tr>
            <td>SciQ (0-shot)</td>
            <td>80.2</td>
            <td>50.9</td>
            <td><b>94.7</b></td>
        </tr>
        <tr>
            <td>Winogrande (0-shot)</td>
            <td>TODO</td>
            <td>TODO</td>
            <td>70.4</td>
        </tr>
        <tr>
            <td>OpenbookQA (0-shot)</td>
            <td><b>46.2</b></td>
            <td>42.4</td>
            <td>45.8</td>
        </tr>
        <tr>
            <td rowspan="2">Instructions following</td>
            <td>MT-Bench (avg)</td>
            <td>7.86</td>
            <td><b>8.54</b></td>
            <td>8.36</td>
        </tr>
        <tr>
            <td>Alapaca (WC)</td>
            <td>26.57</td>
            <td><b>31.5</b></td>
            <td>26.13</td>
        </tr>
    </tbody>
</table>


# Citation
If Falcon3 family were helpful to your work, feel free to give us a cite.

```
@misc{Falcon3,
    title = {The Falcon 3 family of Open Models},
    author = {TII Team},
    month = {December},
    year = {2024}
}
```