metadata
language:
- multilingual
license: apache-2.0
Model Card for FLAN-T5 large
Table of Contents
TL;DR
Model Details
Model Description
- Model type: Language model
- Language(s) (NLP): English
- License: Apache 2.0
Usage
Find below some example scripts on how to use the model in transformers
(Make sure to have the latest transformers, or the one built from source):
Using the Pytorch model
Running the model on a CPU
Click to expand
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/sindibad-7b")
model = AutoModelForCausalLM.from_pretrained("tiiuae/sindibad-7b")
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
Running the model on a GPU
Click to expand
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/sindibad-7b")
model = AutoModelForCausalLM.from_pretrained("tiiuae/sindibad-7b", device_map="auto")
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
Running the model on a GPU using different precisions
FP16
Click to expand
# pip install accelerate
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/sindibad-7b")
model = AutoModelForCausalLM.from_pretrained("tiiuae/sindibad-7b", device_map="auto", torch_dtype=torch.float16)
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
INT8
Click to expand
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/sindibad-7b")
model = AutoModelForCausalLM.from_pretrained("tiiuae/sindibad-7b", device_map="auto", load_in_8bit=True)
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))