|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-base |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: t5-base-trivia-v2-c2a |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-base-trivia-v2-c2a |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0262 |
|
- Validation Loss: 0.0442 |
|
- Epoch: 2 |
|
|
|
<pre>{'eval_loss': 0.6880931854248047, |
|
'eval_bleu': 41.64364079630949, |
|
'eval_rouge1': 49.33, |
|
'eval_rouge2': 23.97, |
|
'eval_rougeL': 49.37, |
|
'eval_rougeLsum': 49.34, |
|
'eval_exact': 0.4503935477601788, |
|
'eval_runtime': 571.9059, |
|
'eval_samples_per_second': 17.994, |
|
'eval_steps_per_second': 0.563}</pre> |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adafactor', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_2_decay': -0.8, 'epsilon_1': 1e-30, 'epsilon_2': 0.001, 'clip_threshold': 1.0, 'relative_step': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 0.1841 | 0.0419 | 0 | |
|
| 0.0358 | 0.0415 | 1 | |
|
| 0.0262 | 0.0442 | 2 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- TensorFlow 2.12.0 |
|
- Datasets 2.14.3 |
|
- Tokenizers 0.13.3 |
|
|