metadata
base_model: EleutherAI/pythia-160m-deduped
language: en
library_name: mlsae
license: mit
tags:
- arxiv:2409.04185
- model_hub_mixin
- pytorch_model_hub_mixin
Model Card for tim-lawson/mlsae-pythia-160m-deduped-x64-k64-tfm
A Multi-Layer Sparse Autoencoder (MLSAE) trained on the residual stream activation vectors from EleutherAI/pythia-160m-deduped with an expansion factor of R = 64 and sparsity k = 64, over 1 billion tokens from monology/pile-uncopyrighted.
This model is a PyTorch Lightning MLSAETransformer module, which includes the underlying transformer.
Model Sources
- Repository: https://github.com/tim-lawson/mlsae
- Paper: https://arxiv.org/abs/2409.04185
- Weights & Biases: https://wandb.ai/timlawson-/mlsae
Citation
BibTeX:
@misc{lawson_residual_2024,
title = {Residual {{Stream Analysis}} with {{Multi-Layer SAEs}}},
author = {Lawson, Tim and Farnik, Lucy and Houghton, Conor and Aitchison, Laurence},
year = {2024},
month = oct,
number = {arXiv:2409.04185},
eprint = {2409.04185},
primaryclass = {cs},
publisher = {arXiv},
doi = {10.48550/arXiv.2409.04185},
urldate = {2024-10-08},
archiveprefix = {arXiv}
}