timm
/

Image Classification
timm
PyTorch

Model card for davit_base.msft_in1k

A DaViT image classification model. Trained on ImageNet-1k by paper authors.

Thanks to Fredo Guan for bringing the classification backbone to timm.

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(
    urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model('davit_base.msft_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(
    urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model(
    'davit_base.msft_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.: 
    #  torch.Size([1, 96, 56, 56])
    #  torch.Size([1, 192, 28, 28])
    #  torch.Size([1, 384, 14, 14])
    #  torch.Size([1, 768, 7, 7]
    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(
    urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model(
    'davit_base.msft_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor

output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor

Model Comparison

By Top-1

model top1 top1_err top5 top5_err param_count img_size crop_pct interpolation
davit_base.msft_in1k 84.634 15.366 97.014 2.986 87.95 224 0.95 bicubic
davit_small.msft_in1k 84.25 15.75 96.94 3.06 49.75 224 0.95 bicubic
davit_tiny.msft_in1k 82.676 17.324 96.276 3.724 28.36 224 0.95 bicubic

Citation

@inproceedings{ding2022davit,
    title={DaViT: Dual Attention Vision Transformer}, 
    author={Ding, Mingyu and Xiao, Bin and Codella, Noel and Luo, Ping and Wang, Jingdong and Yuan, Lu},
    booktitle={ECCV},
    year={2022},
}
Downloads last month
1,208
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train timm/davit_base.msft_in1k