Model card for davit_base.msft_in1k
A DaViT image classification model. Trained on ImageNet-1k by paper authors.
Thanks to Fredo Guan for bringing the classification backbone to timm
.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 88.0
- GMACs: 15.5
- Activations (M): 40.7
- Image size: 224 x 224
- Papers:
- DaViT: Dual Attention Vision Transformers: https://arxiv.org/abs/2204.03645
- Original: https://github.com/dingmyu/davit
- Dataset: ImageNet-1k
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model('davit_base.msft_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'davit_base.msft_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 96, 56, 56])
# torch.Size([1, 192, 28, 28])
# torch.Size([1, 384, 14, 14])
# torch.Size([1, 768, 7, 7]
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'davit_base.msft_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor
output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor
Model Comparison
By Top-1
model | top1 | top1_err | top5 | top5_err | param_count | img_size | crop_pct | interpolation |
---|---|---|---|---|---|---|---|---|
davit_base.msft_in1k | 84.634 | 15.366 | 97.014 | 2.986 | 87.95 | 224 | 0.95 | bicubic |
davit_small.msft_in1k | 84.25 | 15.75 | 96.94 | 3.06 | 49.75 | 224 | 0.95 | bicubic |
davit_tiny.msft_in1k | 82.676 | 17.324 | 96.276 | 3.724 | 28.36 | 224 | 0.95 | bicubic |
Citation
@inproceedings{ding2022davit,
title={DaViT: Dual Attention Vision Transformer},
author={Ding, Mingyu and Xiao, Bin and Codella, Noel and Luo, Ping and Wang, Jingdong and Yuan, Lu},
booktitle={ECCV},
year={2022},
}
- Downloads last month
- 1,208
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.