|
--- |
|
tags: |
|
- image-classification |
|
- timm |
|
library_name: timm |
|
license: cc-by-nc-4.0 |
|
datasets: |
|
- imagenet-1k |
|
--- |
|
# Model card for hiera_small_224.mae_in1k_ft_in1k |
|
|
|
A Hiera image classification model. Pretrained on ImageNet-1k with Self-Supervised Masked Autoencoder (MAE) method and fine-tuned on ImageNet-1k. |
|
|
|
|
|
|
|
## Model Details |
|
- **Model Type:** Image classification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 35.0 |
|
- GMACs: 6.0 |
|
- Activations (M): 17.3 |
|
- Image size: 224 x 224 |
|
- **Dataset:** ImageNet-1k |
|
- **Papers:** |
|
- Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles: https://arxiv.org/abs/2306.00989 |
|
- Masked Autoencoders Are Scalable Vision Learners: https://arxiv.org/abs/2111.06377 |
|
- **Original:** https://github.com/facebookresearch/hiera |
|
|
|
## Model Usage |
|
### Image Classification |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model('hiera_small_224.mae_in1k_ft_in1k', pretrained=True) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
``` |
|
|
|
### Feature Map Extraction |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'hiera_small_224.mae_in1k_ft_in1k', |
|
pretrained=True, |
|
features_only=True, |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
for o in output: |
|
# print shape of each feature map in output |
|
# e.g.: |
|
# torch.Size([1, 96, 56, 56]) |
|
# torch.Size([1, 192, 28, 28]) |
|
# torch.Size([1, 384, 14, 14]) |
|
# torch.Size([1, 768, 7, 7]) |
|
|
|
print(o.shape) |
|
``` |
|
|
|
### Image Embeddings |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'hiera_small_224.mae_in1k_ft_in1k', |
|
pretrained=True, |
|
num_classes=0, # remove classifier nn.Linear |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
|
|
# or equivalently (without needing to set num_classes=0) |
|
|
|
output = model.forward_features(transforms(img).unsqueeze(0)) |
|
# output is unpooled, a (1, 49, 768) shaped tensor |
|
|
|
output = model.forward_head(output, pre_logits=True) |
|
# output is a (1, num_features) shaped tensor |
|
``` |
|
|
|
## Model Comparison |
|
### By Top-1 |
|
|
|
|model |top1 |top5 |param_count| |
|
|---------------------------------|------|------|-----------| |
|
|hiera_huge_224.mae_in1k_ft_in1k |86.834|98.01 |672.78 | |
|
|hiera_large_224.mae_in1k_ft_in1k |86.042|97.648|213.74 | |
|
|hiera_base_plus_224.mae_in1k_ft_in1k|85.134|97.158|69.9 | |
|
|hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k |84.912|97.260|35.01 | |
|
|hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k |84.560|97.106|35.01 | |
|
|hiera_base_224.mae_in1k_ft_in1k |84.49 |97.032|51.52 | |
|
|hiera_small_224.mae_in1k_ft_in1k |83.884|96.684|35.01 | |
|
|hiera_tiny_224.mae_in1k_ft_in1k |82.786|96.204|27.91 | |
|
|
|
## Citation |
|
```bibtex |
|
@article{ryali2023hiera, |
|
title={Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles}, |
|
author={Ryali, Chaitanya and Hu, Yuan-Ting and Bolya, Daniel and Wei, Chen and Fan, Haoqi and Huang, Po-Yao and Aggarwal, Vaibhav and Chowdhury, Arkabandhu and Poursaeed, Omid and Hoffman, Judy and Malik, Jitendra and Li, Yanghao and Feichtenhofer, Christoph}, |
|
journal={ICML}, |
|
year={2023} |
|
} |
|
``` |
|
```bibtex |
|
@Article{MaskedAutoencoders2021, |
|
author = {Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and Piotr Doll{'a}r and Ross Girshick}, |
|
journal = {arXiv:2111.06377}, |
|
title = {Masked Autoencoders Are Scalable Vision Learners}, |
|
year = {2021}, |
|
} |
|
``` |
|
|