timm
/

Image Classification
timm
PyTorch
Edit model card

Model card for levit_384.fb_dist_in1k

A LeViT image classification model using convolutional mode (using nn.Conv2d and nn.BatchNorm2d). Pretrained on ImageNet-1k using distillation by paper authors.

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(
    urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model('levit_384.fb_dist_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(
    urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model(
    'levit_384.fb_dist_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor

output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor

Model Comparison

model top1 top5 param_count img_size
levit_384.fb_dist_in1k 82.596 96.012 39.13 224
levit_conv_384.fb_dist_in1k 82.596 96.012 39.13 224
levit_256.fb_dist_in1k 81.512 95.48 18.89 224
levit_conv_256.fb_dist_in1k 81.512 95.48 18.89 224
levit_conv_192.fb_dist_in1k 79.86 94.792 10.95 224
levit_192.fb_dist_in1k 79.858 94.792 10.95 224
levit_128.fb_dist_in1k 78.474 94.014 9.21 224
levit_conv_128.fb_dist_in1k 78.474 94.02 9.21 224
levit_128s.fb_dist_in1k 76.534 92.864 7.78 224
levit_conv_128s.fb_dist_in1k 76.532 92.864 7.78 224

Citation

@InProceedings{Graham_2021_ICCV,
  author    = {Graham, Benjamin and El-Nouby, Alaaeldin and Touvron, Hugo and Stock, Pierre and Joulin, Armand and Jegou, Herve and Douze, Matthijs},
  title     = {LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  month     = {October},
  year      = {2021},
  pages     = {12259-12269}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
Downloads last month
769
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train timm/levit_384.fb_dist_in1k

Collection including timm/levit_384.fb_dist_in1k