metadata
license: other
tags:
- generated_from_trainer
- axolotl
- llama-cpp
- gguf-my-repo
- LMEngine
base_model: meta-llama/Meta-Llama-3-8B
datasets:
- cognitivecomputations/Dolphin-2.9
- teknium/OpenHermes-2.5
- m-a-p/CodeFeedback-Filtered-Instruction
- cognitivecomputations/dolphin-coder
- cognitivecomputations/samantha-data
- microsoft/orca-math-word-problems-200k
- Locutusque/function-calling-chatml
- internlm/Agent-FLAN
model-index:
- name: out
results: []
tinybiggames/dolphin-2.9.1-llama-3-8b-Q4_K_M-GGUF
This model was converted to GGUF format from cognitivecomputations/dolphin-2.9.1-llama-3-8b
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with tinyBigGAMES's LMEngine Inference Library
How to configure LMEngine:
Config_Init(
'C:/LLM/gguf', // path to model files
-1 // number of GPU layer, -1 to use all available layers
);
How to define model:
Model_Define('dolphin-2.9.1-llama-3-8b.Q4_K_M.gguf',
'dolphin-llama3:8B:Q4KM', 8000,
'<|im_start|>{role}\n{content}<|im_end|>\n',
'<|im_start|>assistant');
How to add a message:
Message_Add(
ROLE_USER, // role
'What is AI?' // content
);
{role}
- will be substituted with the message "role"{content}
- will be substituted with the message "content"
How to do inference:
var
LTokenOutputSpeed: Single;
LInputTokens: Int32;
LOutputTokens: Int32;
LTotalTokens: Int32;
if Inference_Run('dolphin-llama3:8B:Q4KM', 1024) then
begin
Inference_GetUsage(nil, @LTokenOutputSpeed, @LInputTokens, @LOutputTokens,
@LTotalTokens);
Console_PrintLn('', FG_WHITE);
Console_PrintLn('Tokens :: Input: %d, Output: %d, Total: %d, Speed: %3.1f t/s',
FG_BRIGHTYELLOW, LInputTokens, LOutputTokens, LTotalTokens, LTokenOutputSpeed);
end
else
begin
Console_PrintLn('', FG_WHITE);
Console_PrintLn('Error: %s', FG_RED, Error_Get());
end;