tinyllava's picture
Update README.md
76e00bb verified
|
raw
history blame
3.6 kB
metadata
license: apache-2.0
pipeline_tag: image-text-to-text

TinyLLaVA

arXivGithubDemo TinyLLaVA has released a family of small-scale Large Multimodel Models(LMMs), ranging from 1.4B to 3.1B. Our best model, TinyLLaVA-Phi-2-SigLIP-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL.

Here, we introduce TinyLLaVA-Phi-2-SigLIP-3.1B, which is trained by the TinyLLaVA Factory codebase. For LLM and vision tower, we choose Phi-2 and siglip-so400m-patch14-384, respectively. The dataset used for training this model is the ShareGPT4V dataset.

Usage

Execute the following test code:

from transformers import AutoTokenizer, AutoModelForCausalLM

hf_path = 'tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B'
model = AutoModelForCausalLM.from_pretrained(hf_path, trust_remote_code=True)
model.cuda()
config = model.config
tokenizer = AutoTokenizer.from_pretrained(hf_path, use_fast=False, model_max_length = config.tokenizer_model_max_length,padding_side = config.tokenizer_padding_side)
prompt="What are these?"
image_url="http://images.cocodataset.org/test-stuff2017/000000000001.jpg"
output_text, genertaion_time = model.chat(prompt=prompt, image=image_url, tokenizer=tokenizer)

print('model output:', output_text)
print('runing time:', genertaion_time)

Result

model_name vqav2 gqa sqa textvqa MM-VET POPE MME MMMU
LLaVA-1.5-7B 78.5 62.0 66.8 58.2 30.5 85.9 1510.7 -
bczhou/TinyLLaVA-3.1B (our legacy model) 79.9 62.0 69.1 59.1 32.0 86.4 1464.9 -
tinyllava/TinyLLaVA-Gemma-SigLIP-2.4B 78.4 61.6 64.4 53.6 26.9 86.4 1339.0 31.7
tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B 80.1 62.1 73.0 60.3 37.5 87.2 1466.4 38.4

P.S. TinyLLaVA Factory is an open-source modular codebase for small-scale LMMs with a focus on simplicity of code implementations, extensibility of new features, and reproducibility of training results. This code repository provides standard training&evaluating pipelines, flexible data preprocessing&model configurations, and easily extensible architectures. Users can customize their own LMMs with minimal coding effort and less codding mistake.

TinyLLaVA Factory integrates a suite of cutting-edge models and methods.

  • LLM currently supports OpenELM, TinyLlama, StableLM, Qwen, Gemma, and Phi.
  • Vision tower currently supports CLIP, SigLIP, Dino, and combination of CLIP and Dino.
  • Connector currently supports MLP, Qformer, and Resampler.

We will release the TinyLLaVA Factory codebase very soon!