wav2vec2-base-librispeech-demo-colab
This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2489
- Wer: 0.1673
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.7801 | 2.2 | 500 | 2.1946 | 1.0068 |
0.7656 | 4.41 | 1000 | 0.3422 | 0.3137 |
0.3193 | 6.61 | 1500 | 0.2528 | 0.2327 |
0.2202 | 8.81 | 2000 | 0.2141 | 0.2121 |
0.1703 | 11.01 | 2500 | 0.2121 | 0.1966 |
0.1388 | 13.22 | 3000 | 0.3337 | 0.2325 |
0.119 | 15.42 | 3500 | 0.2342 | 0.1847 |
0.0992 | 17.62 | 4000 | 0.2356 | 0.1785 |
0.0875 | 19.82 | 4500 | 0.2534 | 0.1810 |
0.0769 | 22.03 | 5000 | 0.2491 | 0.1765 |
0.0661 | 24.23 | 5500 | 0.2513 | 0.1710 |
0.0587 | 26.43 | 6000 | 0.2546 | 0.1686 |
0.0544 | 28.63 | 6500 | 0.2489 | 0.1673 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.