model documentation

#1
by nazneen - opened
Files changed (1) hide show
  1. README.md +202 -0
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - cnlpt
4
+ ---
5
+
6
+ # Model Card for cnlpt-negation-roberta-sharpseed
7
+
8
+ # Model Details
9
+
10
+ ## Model Description
11
+
12
+ More information needed
13
+ - **Developed by:** More information needed
14
+ - **Shared by [Optional]:** Tim Miller
15
+ - **Model type:** More information needed
16
+ - **Language(s) (NLP):** More information needed
17
+ - **License:** More information needed
18
+ - **Parent Model:** [RoBERTa](https://huggingface.co/roberta-base?text=Paris+is+the+%3Cmask%3E+of+France.)
19
+ - **Resources for more information:**
20
+ - [cnlp GitHub Repo](https://github.com/Machine-Learning-for-Medical-Language/cnlp_transformers)
21
+
22
+
23
+
24
+
25
+
26
+
27
+ # Uses
28
+
29
+
30
+ ## Direct Use
31
+ More information needed
32
+
33
+ ## Downstream Use [Optional]
34
+
35
+ More information needed.
36
+
37
+ ## Out-of-Scope Use
38
+
39
+ The model should not be used to intentionally create hostile or alienating environments for people.
40
+
41
+ # Bias, Risks, and Limitations
42
+
43
+
44
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
45
+
46
+ >RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts.
47
+
48
+ See [RoBERTa model card](https://huggingface.co/roberta-base?text=Paris+is+the+%3Cmask%3E+of+France.) for more information.
49
+
50
+ ## Recommendations
51
+
52
+
53
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
54
+
55
+ # Training Details
56
+
57
+ ## Training Data
58
+
59
+ > The RoBERTa model was pretrained on the reunion of five datasets:
60
+ [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books;
61
+ [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers) ;
62
+ [CC-News](https://commoncrawl.org/2016/10/news-dataset-available/), a dataset containing 63 millions English news articles crawled between September 2016 and February 2019.
63
+ [OpenWebText](https://github.com/jcpeterson/openwebtext), an opensource recreation of the WebText dataset used to train GPT-2,
64
+ [Stories](https://arxiv.org/abs/1806.02847) a dataset containing a subset of CommonCrawl data filtered to match the story-like style of Winograd schemas.
65
+
66
+ See [RoBERTa model card](https://huggingface.co/roberta-base?text=Paris+is+the+%3Cmask%3E+of+France.) for more information.
67
+
68
+
69
+
70
+
71
+ ## Training Procedure
72
+
73
+
74
+ ### Preprocessing
75
+
76
+ More information needed
77
+
78
+ ### Speeds, Sizes, Times
79
+
80
+ More information needed
81
+
82
+ # Evaluation
83
+
84
+
85
+ ## Testing Data, Factors & Metrics
86
+
87
+ ### Testing Data
88
+
89
+ More information needed
90
+
91
+ ### Factors
92
+ More information needed
93
+
94
+ ### Metrics
95
+
96
+ More information needed
97
+
98
+
99
+ ## Results
100
+
101
+ More information needed
102
+
103
+
104
+
105
+ # Model Examination
106
+
107
+ More information needed
108
+
109
+ # Environmental Impact
110
+
111
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
112
+
113
+ - **Hardware Type:** More information needed
114
+ - **Hours used:** More information needed
115
+ - **Cloud Provider:** More information needed
116
+ - **Compute Region:** More information needed
117
+ - **Carbon Emitted:** More information needed
118
+
119
+ # Technical Specifications [optional]
120
+
121
+ ## Model Architecture and Objective
122
+
123
+ More information needed
124
+
125
+ ## Compute Infrastructure
126
+
127
+ More information needed
128
+
129
+ ### Hardware
130
+
131
+
132
+ More information needed
133
+
134
+ ### Software
135
+
136
+ More information needed.
137
+
138
+ # Citation
139
+
140
+
141
+ **BibTeX:**
142
+
143
+ ```bibtex
144
+ @article{DBLP:journals/corr/abs-1907-11692,
145
+ author = {Yinhan Liu and
146
+ Myle Ott and
147
+ Naman Goyal and
148
+ Jingfei Du and
149
+ Mandar Joshi and
150
+ Danqi Chen and
151
+ Omer Levy and
152
+ Mike Lewis and
153
+ Luke Zettlemoyer and
154
+ Veselin Stoyanov},
155
+ title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach},
156
+ journal = {CoRR},
157
+ volume = {abs/1907.11692},
158
+ year = {2019},
159
+ url = {http://arxiv.org/abs/1907.11692},
160
+ archivePrefix = {arXiv},
161
+ eprint = {1907.11692},
162
+ timestamp = {Thu, 01 Aug 2019 08:59:33 +0200},
163
+ biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib},
164
+ bibsource = {dblp computer science bibliography, https://dblp.org}
165
+ }
166
+ ```
167
+
168
+
169
+
170
+
171
+ **APA:**
172
+
173
+ More information needed
174
+
175
+ # Glossary [optional]
176
+
177
+ More information needed
178
+
179
+ # More Information [optional]
180
+ More information needed
181
+
182
+ # Model Card Authors [optional]
183
+
184
+ Tim Miller in collaboration with Ezi Ozoani and the Hugging Face team
185
+
186
+ # Model Card Contact
187
+
188
+ More information needed
189
+
190
+ # How to Get Started with the Model
191
+
192
+ Use the code below to get started with the model.
193
+
194
+ <details>
195
+ <summary> Click to expand </summary>
196
+
197
+ ```python
198
+ from transformers import CnlpModelForClassification
199
+
200
+ model = CnlpModelForClassification.from_pretrained("tmills/cnlpt-negation-roberta-sharpseed")
201
+ ```
202
+ </details>