|
--- |
|
language: |
|
- en |
|
license: mit |
|
base_model: microsoft/mdeberta-v3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- tmnam20/VieGLUE |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: mdeberta-v3-base-mnli-100 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: tmnam20/VieGLUE/MNLI |
|
type: tmnam20/VieGLUE |
|
config: mnli |
|
split: validation_matched |
|
args: mnli |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8412327095199349 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mdeberta-v3-base-mnli-100 |
|
|
|
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/MNLI dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4764 |
|
- Accuracy: 0.8412 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 16 |
|
- seed: 100 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.5194 | 0.41 | 5000 | 0.4901 | 0.8127 | |
|
| 0.4861 | 0.81 | 10000 | 0.4713 | 0.8114 | |
|
| 0.3993 | 1.22 | 15000 | 0.4508 | 0.8285 | |
|
| 0.3867 | 1.63 | 20000 | 0.4546 | 0.8302 | |
|
| 0.3496 | 2.04 | 25000 | 0.4765 | 0.8295 | |
|
| 0.3376 | 2.44 | 30000 | 0.4828 | 0.8315 | |
|
| 0.3104 | 2.85 | 35000 | 0.4852 | 0.8314 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.2.0.dev20231203+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|