|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- kp20k |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: ED_keyphrase/ |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: kp20k |
|
type: kp20k |
|
config: generation |
|
split: train[:15%] |
|
args: generation |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.0784 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ED_keyphrase/ |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the kp20k dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.4436 |
|
- Rouge1: 0.0784 |
|
- Rouge2: 0.0159 |
|
- Rougel: 0.0732 |
|
- Rougelsum: 0.0732 |
|
- Gen Len: 70.8515 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 6.1614 | 1.0 | 664 | 5.2825 | 0.0866 | 0.0047 | 0.0767 | 0.0767 | 53.6569 | |
|
| 5.2585 | 2.0 | 1328 | 4.7707 | 0.0551 | 0.0087 | 0.0517 | 0.0518 | 83.1487 | |
|
| 4.8764 | 3.0 | 1992 | 4.5703 | 0.0634 | 0.0117 | 0.0594 | 0.0595 | 81.5616 | |
|
| 4.5709 | 4.0 | 2656 | 4.4749 | 0.0743 | 0.0145 | 0.0695 | 0.0695 | 72.9576 | |
|
| 4.4978 | 5.0 | 3320 | 4.4436 | 0.0784 | 0.0159 | 0.0732 | 0.0732 | 70.8515 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.0+cu116 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |
|
|