|
--- |
|
language: |
|
- en |
|
- ja |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
license: llama2 |
|
model_type: llama |
|
--- |
|
|
|
# Swallow |
|
|
|
Our Swallow model has undergone continuous pre-training from the [Llama 2 family](https://huggingface.co/meta-llama), primarily with the addition of Japanese language data. The tuned versions use supervised fine-tuning (SFT). |
|
Links to other models can be found in the index. |
|
|
|
## Swallow Model Index |
|
|Model|Swallow-hf|Swallow-instruct-hf| |
|
|---|---|---| |
|
|7B| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf)| |
|
|7B-Plus| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-plus-hf) | Coming Soon | |
|
|13B| [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-hf)| |
|
|70B| [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf)| |
|
|
|
## Swallow Model Index NVE (No Vocabulary Expansion) |
|
|Model|Swallow-NVE-hf|Swallow-NVE-instruct-hf| |
|
|---|---|---| |
|
|7B| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-instruct-hf)| |
|
|13B| [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-NVE-hf) | Coming Soon | |
|
|70B| [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-instruct-hf)| |
|
|
|
We released the 7B and 70B models without vocabulary expansion on January 26th, 2024. The 13B model was released on February 4th, 2024, and its instruction-tuned version is coming soon. Swallow-7B-Plus is a model that has been trained with a larger number of Japanese tokens compared to Swallow-7B and its release date is March 2nd, 2024. |
|
|
|
|
|
![logo](./logo.png) |
|
|
|
This repository provides large language models developed by [TokyoTech-LLM](https://tokyotech-llm.github.io/). |
|
Read our [blog post](https://zenn.dev/tokyotech_lm/articles/d6cb3a8fdfc907) or our [paper](https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/A8-5.pdf) |
|
|
|
## Model Details |
|
|
|
* **Model type**: Please refer to LLaMA-2 technical report for details on the model architecture. |
|
* **Language(s)**: Japanese English |
|
* **Library**: [Megatron-LM](https://github.com/rioyokotalab/Megatron-Llama2) |
|
* **Tokenizer**: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process. |
|
* **Contact**: swallow[at]nlp.c.titech.ac.jp |
|
|
|
## Base Model Performance |
|
|
|
### Japanese tasks |
|
|
|
|Model|Size|JCommonsenseQA|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en| |
|
|---|---|---|---|---|---|---|---|---|---| |
|
| | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot| |
|
| Llama 2 | 7B | 0.3852 | 0.4240 | 0.3410 | 0.7917 | 0.1905 | 0.0760 | 0.1783 | 0.1738 | |
|
| Swallow | 7B | 0.4808 | 0.5078 | 0.5968 | 0.8573 | 0.1830 | 0.1240 | 0.2510 | 0.1511 | |
|
| Swallow-Plus | 7B | 0.5478 | 0.5493 | 0.6030 | 0.8544 | 0.1806 | 0.1360 | 0.2568 | 0.1441 | |
|
| Swallow-NVE | 7B | 0.5433 | 0.5425 | 0.5729 | 0.8684 | 0.2117 | 0.1200 | 0.2405 | 0.1512 | |
|
| Llama 2 | 13B | 0.6997 | 0.4415 | 0.4170 | 0.8533 | 0.2139 | 0.1320 | 0.2146 | 0.1982 | |
|
| Swallow | 13B | 0.7837 | 0.5063 | 0.6398 | 0.9005 | 0.2168 | 0.2040 | 0.2720 | 0.1771 | |
|
| Swallow-NVE | 13B | 0.7712 | 0.5438 | 0.6351 | 0.9030 | 0.2294 | 0.2120 | 0.2735 | 0.1817 | |
|
| Llama 2 | 70B | 0.8686 | 0.4656 | 0.5256 | 0.9080 | 0.2361 | 0.3560 | 0.2643 | **0.2398** | |
|
| Swallow | 70B | 0.9348 | **0.6290** | 0.6960 | 0.9176 | 0.2266 | **0.4840** | **0.3043** | 0.2298 | |
|
| Swallow-NVE | 70B | **0.9410** | 0.5759 | **0.7024** | **0.9254** | **0.2758** | 0.4720 | 0.3042 | 0.2322 | |
|
### English tasks |
|
|
|
|Model|Size|OpenBookQA|TriviaQA|HellaSwag|SQuAD2.0|XWINO|GSM8K| |
|
|---|---|---|---|---|---|---|---| |
|
| | |8-shot|8-shot|8-shot|8-shot|8-shot|8-shot| |
|
| Llama 2 | 7B | 0.3580 | 0.6265 | 0.5860 | 0.3207 | 0.9049 | 0.1410 | |
|
| Swallow | 7B | 0.3180 | 0.4836 | 0.5308 | 0.3125 | 0.8817 | 0.1130 | |
|
| Swallow-Plus | 7B | 0.3280 | 0.4558 | 0.5259 | 0.3134 | 0.8929 | 0.1061 | |
|
| Swallow-NVE | 7B | 0.3180 | 0.5079 | 0.5329 | 0.2919 | 0.8817 | 0.0986 | |
|
| Llama 2 | 13B | 0.3760 | 0.7255 | 0.6148 | 0.3681 | 0.9140 | 0.2403 | |
|
| Swallow | 13B | 0.3500 | 0.5852 | 0.5660 | 0.3406 | 0.9075 | 0.2039 | |
|
| Swallow-NVE | 13B | 0.3460 | 0.6025 | 0.5700 | 0.3478 | 0.9006 | 0.1751 | |
|
| Llama 2 | 70B | **0.4280** | **0.8239** | **0.6742** | **0.3770** | **0.9290** | **0.5284** | |
|
| Swallow | 70B | 0.4220 | 0.7756 | 0.6458 | 0.3745 | 0.9204 | 0.4867 | |
|
| Swallow-NVE | 70B | 0.4240 | 0.7817 | 0.6439 | 0.3451 | 0.9256 | 0.4943 | |
|
|
|
## Evaluation Benchmarks |
|
|
|
### Japanese evaluation benchmarks |
|
|
|
We used llm-jp-eval(v1.0.0) and JP Language Model Evaluation Harness(commit #9b42d41). The details are as follows: |
|
|
|
- Multiple-choice question answering (JCommonsenseQA [Kurihara+, 2022]) |
|
- Open-ended question answering (JEMHopQA [Ishii+, 2023]) |
|
- Open-ended question answering (NIILC [Sekine, 2003]) |
|
- Machine reading comprehension (JSQuAD [Kurihara+, 2022]) |
|
- Automatic summarization (XL-Sum [Hasan+, 2021]) |
|
- Machine translation (WMT2020 ja-en [Barrault+, 2020]) |
|
- Machine translation (WMT2020 en-ja [Barrault+, 2020]) |
|
- Mathematical reasoning (MGSM [Shi+, 2023]) |
|
|
|
### English evaluation benchmarks |
|
|
|
We used the Language Model Evaluation Harness(v.0.3.0). The details are as follows: |
|
|
|
- Multiple-choice question answering (OpenBookQA [Mihaylov+, 2018]) |
|
- Open-ended question answering (TriviaQA [Joshi+, 2017]) |
|
- Machine reading comprehension (SQuAD 2.0 [Rajpurkar+, 2018]) |
|
- Commonsense reasoning (XWINO [Tikhonov & Ryabinin, 2021]) |
|
- Natural language inference (HellaSwag [Zellers+, 2019]) |
|
- Mathematical reasoning (GSM8k [Cobbe+, 2021]) |
|
|
|
|
|
## Usage |
|
|
|
First install additional dependencies in [requirements.txt](./requirements.txt): |
|
|
|
```sh |
|
pip install -r requirements.txt |
|
``` |
|
|
|
### Use the instruct model |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_name = "tokyotech-llm/Swallow-7b-instruct-hf" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto") |
|
|
|
|
|
PROMPT_DICT = { |
|
"prompt_input": ( |
|
"以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。" |
|
"リクエストを適切に完了するための回答を記述してください。\n\n" |
|
"### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:" |
|
|
|
), |
|
"prompt_no_input": ( |
|
"以下に、あるタスクを説明する指示があります。" |
|
"リクエストを適切に完了するための回答を記述してください。\n\n" |
|
"### 指示:\n{instruction}\n\n### 応答:" |
|
), |
|
} |
|
|
|
def create_prompt(instruction, input=None): |
|
""" |
|
Generates a prompt based on the given instruction and an optional input. |
|
If input is provided, it uses the 'prompt_input' template from PROMPT_DICT. |
|
If no input is provided, it uses the 'prompt_no_input' template. |
|
|
|
Args: |
|
instruction (str): The instruction describing the task. |
|
input (str, optional): Additional input providing context for the task. Default is None. |
|
|
|
Returns: |
|
str: The generated prompt. |
|
""" |
|
if input: |
|
# Use the 'prompt_input' template when additional input is provided |
|
return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input) |
|
else: |
|
# Use the 'prompt_no_input' template when no additional input is provided |
|
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction) |
|
|
|
# Example usage |
|
instruction_example = "以下のトピックに関する詳細な情報を提供してください。" |
|
input_example = "東京工業大学の主なキャンパスについて教えてください" |
|
prompt = create_prompt(instruction_example, input_example) |
|
|
|
input_ids = tokenizer.encode( |
|
prompt, |
|
add_special_tokens=False, |
|
return_tensors="pt" |
|
) |
|
|
|
tokens = model.generate( |
|
input_ids.to(device=model.device), |
|
max_new_tokens=128, |
|
temperature=0.99, |
|
top_p=0.95, |
|
do_sample=True, |
|
) |
|
|
|
out = tokenizer.decode(tokens[0], skip_special_tokens=True) |
|
print(out) |
|
|
|
``` |
|
|
|
### Use the base model |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_name = "tokyotech-llm/Swallow-7b-hf" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
prompt = "東京工業大学の主なキャンパスは、" |
|
input_ids = tokenizer.encode( |
|
prompt, |
|
add_special_tokens=False, |
|
return_tensors="pt" |
|
) |
|
tokens = model.generate( |
|
input_ids.to(device=model.device), |
|
max_new_tokens=128, |
|
temperature=0.99, |
|
top_p=0.95, |
|
do_sample=True, |
|
) |
|
|
|
out = tokenizer.decode(tokens[0], skip_special_tokens=True) |
|
print(out) |
|
``` |
|
|
|
## Training Datasets |
|
|
|
### Continual Pre-Training |
|
The following datasets were used for continual pre-training. |
|
|
|
- [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) |
|
- [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) |
|
- Swallow Corpus |
|
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile) |
|
|
|
|
|
### Instruction Tuning |
|
|
|
The following datasets were used for the instruction tuning. |
|
|
|
- [Anthropic HH-RLHF](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja) |
|
- [Databricks Dolly 15-k](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja) |
|
- [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/kunishou/oasst1-89k-ja) |
|
|
|
## Risks and Limitations |
|
|
|
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. |
|
|
|
## Acknowledgements |
|
|
|
We thank Meta Research for releasing Llama 2 under an open license for others to build on. |
|
|
|
Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology. |
|
|
|
## License |
|
|
|
Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved. |
|
|
|
## Authors |
|
|
|
Here are the team members: |
|
- From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members: |
|
- [Naoaki Okazaki](https://www.chokkan.org/index.ja.html) |
|
- [Sakae Mizuki](https://s-mizuki-nlp.github.io/) |
|
- [Hiroki Iida](https://meshidenn.github.io/) |
|
- [Mengsay Loem](https://loem-ms.github.io/) |
|
- [Shota Hirai](https://huggingface.co/Kotemo428) |
|
- [Kakeru Hattori](https://aya-se.vercel.app/) |
|
- [Masanari Ohi](https://twitter.com/stjohn2007) |
|
- From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members: |
|
- [Rio Yokota](https://twitter.com/rioyokota) |
|
- [Kazuki Fujii](https://twitter.com/okoge_kaz) |
|
- [Taishi Nakamura](https://twitter.com/Setuna7777_2) |
|
|