|
--- |
|
language: en |
|
license: cc-by-sa-4.0 |
|
library_name: span-marker |
|
tags: |
|
- span-marker |
|
- token-classification |
|
- ner |
|
- named-entity-recognition |
|
- generated_from_span_marker_trainer |
|
base_model: FacebookAI/xlm-roberta-base |
|
datasets: |
|
- norne |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
widget: |
|
- text: Av Boethius hand förelåg De institutione arithmetica (" Om aritmetikens grunder |
|
") i två böcker. |
|
- text: Hans hovedmotstander var lederen for opposisjonspartiet Movement for Democratic |
|
Change, Morgan Tsvangirai. |
|
- text: Roddarn blir proffs efter OS. |
|
- text: Han blev dog diskvalificeret for at have trådt på banelinjen, og bronzemedaljen |
|
gik i stedet til landsmanden Walter Dix. |
|
- text: Stillingen var på dette tidspunkt 1-1, men Almunias redning banede vejen for |
|
et sejrsmål af danske Nicklas Bendtner. |
|
pipeline_tag: token-classification |
|
model-index: |
|
- name: SpanMarker with FacebookAI/xlm-roberta-base on norne |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Named Entity Recognition |
|
dataset: |
|
name: norne |
|
type: norne |
|
split: test |
|
metrics: |
|
- type: f1 |
|
value: 0.9181825779313034 |
|
name: F1 |
|
- type: precision |
|
value: 0.9217689611454993 |
|
name: Precision |
|
- type: recall |
|
value: 0.9146239940801036 |
|
name: Recall |
|
--- |
|
|
|
# SpanMarker with xlm-roberta-base |
|
Trained on various nordic lang. datasets: see https://huggingface.co/datasets/tollefj/nordic-ner |
|
|
|
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [norne](https://huggingface.co/datasets/norne) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) as the underlying encoder. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SpanMarker |
|
- **Encoder:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Maximum Entity Length:** 8 words |
|
- **Training Dataset:** [norne](https://huggingface.co/datasets/norne) |
|
- **Language:** en |
|
- **License:** cc-by-sa-4.0 |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) |
|
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-------------------------------------------------------------| |
|
| LOC | "Gran", "Leicestershire", "Den tyske antarktisekspedisjonen" | |
|
| MISC | "socialdemokratiske", "nationalist", "Living Legend" | |
|
| ORG | "Stabæk", "Samlaget", "Marillion" | |
|
| PER | "Fish", "Dmitrij Medvedev", "Guru Ardjan Dev" | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Precision | Recall | F1 | |
|
|:--------|:----------|:-------|:-------| |
|
| **all** | 0.9218 | 0.9146 | 0.9182 | |
|
| LOC | 0.9284 | 0.9433 | 0.9358 | |
|
| MISC | 0.6515 | 0.6047 | 0.6272 | |
|
| ORG | 0.8951 | 0.8547 | 0.8745 | |
|
| PER | 0.9513 | 0.9526 | 0.9520 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
```python |
|
from span_marker import SpanMarkerModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SpanMarkerModel.from_pretrained("span_marker_model_id") |
|
# Run inference |
|
entities = model.predict("Roddarn blir proffs efter OS.") |
|
``` |
|
|
|
### Downstream Use |
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
```python |
|
from span_marker import SpanMarkerModel, Trainer |
|
|
|
# Download from the 🤗 Hub |
|
model = SpanMarkerModel.from_pretrained("span_marker_model_id") |
|
|
|
# Specify a Dataset with "tokens" and "ner_tag" columns |
|
dataset = load_dataset("conll2003") # For example CoNLL2003 |
|
|
|
# Initialize a Trainer using the pretrained model & dataset |
|
trainer = Trainer( |
|
model=model, |
|
train_dataset=dataset["train"], |
|
eval_dataset=dataset["validation"], |
|
) |
|
trainer.train() |
|
trainer.save_model("span_marker_model_id-finetuned") |
|
``` |
|
</details> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:----------------------|:----|:--------|:----| |
|
| Sentence length | 1 | 12.8175 | 331 | |
|
| Entities per sentence | 0 | 1.0055 | 54 | |
|
|
|
### Training Hyperparameters |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training Results |
|
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |
|
|:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| |
|
| 0.5711 | 3000 | 0.0146 | 0.8650 | 0.8725 | 0.8687 | 0.9722 | |
|
| 1.1422 | 6000 | 0.0123 | 0.8994 | 0.8920 | 0.8957 | 0.9778 | |
|
| 1.7133 | 9000 | 0.0101 | 0.9184 | 0.8984 | 0.9083 | 0.9805 | |
|
| 2.2844 | 12000 | 0.0101 | 0.9198 | 0.9110 | 0.9154 | 0.9818 | |
|
| 2.8555 | 15000 | 0.0089 | 0.9245 | 0.9150 | 0.9197 | 0.9830 | |
|
|
|
### Framework Versions |
|
- Python: 3.12.2 |
|
- SpanMarker: 1.5.0 |
|
- Transformers: 4.38.2 |
|
- PyTorch: 2.2.1+cu121 |
|
- Datasets: 2.18.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
``` |
|
@software{Aarsen_SpanMarker, |
|
author = {Aarsen, Tom}, |
|
license = {Apache-2.0}, |
|
title = {{SpanMarker for Named Entity Recognition}}, |
|
url = {https://github.com/tomaarsen/SpanMarkerNER} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |