Nikita Pavlichenko
Calc loss only on prompts, add special tokens, remove grouping
77dd825
|
raw
history blame
1.91 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: gpt2-sweep
    results: []

gpt2-sweep

This model is a fine-tuned version of gpt2-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0773
  • Accuracy: 0.8482

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.294477077303931e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.4891 0.19 1000 2.4467 0.8446
2.7019 0.37 2000 2.3208 0.8456
2.5278 0.56 3000 2.2470 0.8464
2.0687 0.74 4000 2.1953 0.8468
2.1738 0.93 5000 2.1543 0.8472
1.8554 1.12 6000 2.1500 0.8475
1.9276 1.3 7000 2.1223 0.8477
1.7988 1.49 8000 2.1120 0.8479
2.0632 1.67 9000 2.0973 0.8480
1.9586 1.86 10000 2.0826 0.8481

Framework versions

  • Transformers 4.26.0
  • Pytorch 2.0.0+cu117
  • Datasets 2.9.0
  • Tokenizers 0.13.2