Edit model card

SetFit with sentence-transformers/all-MiniLM-L6-v2 on sst2

This is a SetFit model trained on the sst2 dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
negative
  • 'a tough pill to swallow and '
  • 'indignation '
  • 'that the typical hollywood disregard for historical truth and realism is at work here '
positive
  • "a moving experience for people who have n't read the book "
  • 'in the best possible senses of both those words '
  • 'to serve the work especially well '

Evaluation

Metrics

Label Accuracy
all 0.7513

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from 🤗 Hub
model = SetFitModel.from_pretrained("tomaarsen/setfit-all-MiniLM-L6-v2-sst2-8-shot")
# Run inference
preds = model("a fast , funny , highly enjoyable movie . ")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 10.2812 36
Label Training Sample Count
negative 32
positive 32

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0076 1 0.3787 -
0.0758 10 0.2855 -
0.1515 20 0.3458 0.29
0.2273 30 0.2496 -
0.3030 40 0.2398 0.2482
0.3788 50 0.2068 -
0.4545 60 0.2471 0.244
0.5303 70 0.2053 -
0.6061 80 0.1802 0.2361
0.6818 90 0.0767 -
0.7576 100 0.0279 0.2365
0.8333 110 0.0192 -
0.9091 120 0.0095 0.2527
0.9848 130 0.0076 -
1.0606 140 0.0082 0.2651
1.1364 150 0.0068 -
1.2121 160 0.0052 0.2722
1.2879 170 0.0029 -
1.3636 180 0.0042 0.273
1.4394 190 0.0026 -
1.5152 200 0.0036 0.2761
1.5909 210 0.0044 -
1.6667 220 0.0027 0.2796
1.7424 230 0.0025 -
1.8182 240 0.0025 0.2817
1.8939 250 0.003 -
1.9697 260 0.0026 0.2817
2.0455 270 0.0035 -
2.1212 280 0.002 0.2816
2.1970 290 0.0023 -
2.2727 300 0.0016 0.2821
2.3485 310 0.0023 -
2.4242 320 0.0015 0.2838
2.5 330 0.0014 -
2.5758 340 0.002 0.2842
2.6515 350 0.002 -
2.7273 360 0.0013 0.2847
2.8030 370 0.0009 -
2.8788 380 0.0018 0.2857
2.9545 390 0.0016 -
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Carbon Emitted: 0.003 kg of CO2
  • Hours Used: 0.072 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.9.16
  • SetFit: 1.0.0.dev0
  • Sentence Transformers: 2.2.2
  • Transformers: 4.29.0
  • PyTorch: 1.13.1+cu117
  • Datasets: 2.15.0
  • Tokenizers: 0.13.3

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
50
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tomaarsen/setfit-all-MiniLM-L6-v2-sst2-32-shot

Finetuned
(161)
this model

Dataset used to train tomaarsen/setfit-all-MiniLM-L6-v2-sst2-32-shot

Collection including tomaarsen/setfit-all-MiniLM-L6-v2-sst2-32-shot

Evaluation results