SentenceTransformer based on sentence-transformers/stsb-distilbert-base
This is a sentence-transformers model finetuned from sentence-transformers/stsb-distilbert-base on the sentence-transformers/quora-duplicates dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/stsb-distilbert-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/stsb-distilbert-base-ocl")
# Run inference
sentences = [
'Is stretching bad?',
'Is stretching good for you?',
'If i=0; what will i=i++ do to i?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
quora-duplicates
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.86 |
cosine_accuracy_threshold | 0.8104 |
cosine_f1 | 0.8251 |
cosine_f1_threshold | 0.7248 |
cosine_precision | 0.7347 |
cosine_recall | 0.9407 |
cosine_ap | 0.8872 |
dot_accuracy | 0.828 |
dot_accuracy_threshold | 157.3549 |
dot_f1 | 0.7899 |
dot_f1_threshold | 145.7113 |
dot_precision | 0.7155 |
dot_recall | 0.8814 |
dot_ap | 0.8369 |
manhattan_accuracy | 0.868 |
manhattan_accuracy_threshold | 208.0035 |
manhattan_f1 | 0.8308 |
manhattan_f1_threshold | 208.0035 |
manhattan_precision | 0.7922 |
manhattan_recall | 0.8733 |
manhattan_ap | 0.8868 |
euclidean_accuracy | 0.867 |
euclidean_accuracy_threshold | 9.2694 |
euclidean_f1 | 0.8301 |
euclidean_f1_threshold | 9.5257 |
euclidean_precision | 0.7888 |
euclidean_recall | 0.876 |
euclidean_ap | 0.8884 |
max_accuracy | 0.868 |
max_accuracy_threshold | 208.0035 |
max_f1 | 0.8308 |
max_f1_threshold | 208.0035 |
max_precision | 0.7922 |
max_recall | 0.9407 |
max_ap | 0.8884 |
Paraphrase Mining
- Dataset:
quora-duplicates-dev
- Evaluated with
ParaphraseMiningEvaluator
Metric | Value |
---|---|
average_precision | 0.5344 |
f1 | 0.5448 |
precision | 0.5311 |
recall | 0.5592 |
threshold | 0.8626 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.928 |
cosine_accuracy@3 | 0.9712 |
cosine_accuracy@5 | 0.9782 |
cosine_accuracy@10 | 0.9874 |
cosine_precision@1 | 0.928 |
cosine_precision@3 | 0.4151 |
cosine_precision@5 | 0.2666 |
cosine_precision@10 | 0.1417 |
cosine_recall@1 | 0.7994 |
cosine_recall@3 | 0.9342 |
cosine_recall@5 | 0.9561 |
cosine_recall@10 | 0.9766 |
cosine_ndcg@10 | 0.9516 |
cosine_mrr@10 | 0.9509 |
cosine_map@100 | 0.939 |
dot_accuracy@1 | 0.8926 |
dot_accuracy@3 | 0.9518 |
dot_accuracy@5 | 0.9658 |
dot_accuracy@10 | 0.9768 |
dot_precision@1 | 0.8926 |
dot_precision@3 | 0.4027 |
dot_precision@5 | 0.2608 |
dot_precision@10 | 0.1388 |
dot_recall@1 | 0.768 |
dot_recall@3 | 0.9106 |
dot_recall@5 | 0.9402 |
dot_recall@10 | 0.9623 |
dot_ndcg@10 | 0.9264 |
dot_mrr@10 | 0.9243 |
dot_map@100 | 0.9094 |
Training Details
Training Dataset
sentence-transformers/quora-duplicates
- Dataset: sentence-transformers/quora-duplicates at 451a485
- Size: 100,000 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 15.5 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 15.46 tokens
- max: 78 tokens
- 0: ~64.10%
- 1: ~35.90%
- Samples:
sentence1 sentence2 label What are the best ecommerce blogs to do guest posts on about SEO to gain new clients?
Interested in being a guest blogger for an ecommerce marketing blog?
0
How do I learn Informatica online training?
What is Informatica online training?
0
What effects does marijuana use have on the flu?
What effects does Marijuana use have on the common cold?
0
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
sentence-transformers/quora-duplicates
- Dataset: sentence-transformers/quora-duplicates at 451a485
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 15.82 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 15.91 tokens
- max: 72 tokens
- 0: ~62.90%
- 1: ~37.10%
- Samples:
sentence1 sentence2 label How should I prepare for JEE Mains 2017?
How do I prepare for the JEE 2016?
0
What is the gate exam?
What is the GATE exam in engineering?
0
Where do IRS officers get posted?
Does IRS Officers get posted abroad?
0
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Falseper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Nonedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | cosine_map@100 | quora-duplicates-dev_average_precision | quora-duplicates_max_ap |
---|---|---|---|---|---|---|
0 | 0 | - | - | 0.9235 | 0.4200 | 0.7276 |
0.0640 | 100 | 2.5123 | - | - | - | - |
0.1280 | 200 | 2.0534 | - | - | - | - |
0.1599 | 250 | - | 1.7914 | 0.9127 | 0.4082 | 0.8301 |
0.1919 | 300 | 1.9505 | - | - | - | - |
0.2559 | 400 | 1.9836 | - | - | - | - |
0.3199 | 500 | 1.8462 | 1.5923 | 0.9190 | 0.4445 | 0.8688 |
0.3839 | 600 | 1.7734 | - | - | - | - |
0.4479 | 700 | 1.7918 | - | - | - | - |
0.4798 | 750 | - | 1.5461 | 0.9291 | 0.4943 | 0.8707 |
0.5118 | 800 | 1.6157 | - | - | - | - |
0.5758 | 900 | 1.7244 | - | - | - | - |
0.6398 | 1000 | 1.7322 | 1.5294 | 0.9309 | 0.5048 | 0.8808 |
0.7038 | 1100 | 1.6825 | - | - | - | - |
0.7678 | 1200 | 1.6823 | - | - | - | - |
0.7997 | 1250 | - | 1.4812 | 0.9351 | 0.5126 | 0.8865 |
0.8317 | 1300 | 1.5707 | - | - | - | - |
0.8957 | 1400 | 1.6145 | - | - | - | - |
0.9597 | 1500 | 1.5795 | 1.4705 | 0.9390 | 0.5344 | 0.8884 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.040 kWh
- Carbon Emitted: 0.016 kg of CO2
- Hours Used: 0.202 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for tomaarsen/stsb-distilbert-base-ocl
Base model
sentence-transformers/stsb-distilbert-baseEvaluation results
- Cosine Accuracy on quora duplicatesself-reported0.860
- Cosine Accuracy Threshold on quora duplicatesself-reported0.810
- Cosine F1 on quora duplicatesself-reported0.825
- Cosine F1 Threshold on quora duplicatesself-reported0.725
- Cosine Precision on quora duplicatesself-reported0.735
- Cosine Recall on quora duplicatesself-reported0.941
- Cosine Ap on quora duplicatesself-reported0.887
- Dot Accuracy on quora duplicatesself-reported0.828
- Dot Accuracy Threshold on quora duplicatesself-reported157.355
- Dot F1 on quora duplicatesself-reported0.790