LLaVA-JP Model Card

Model detail

Model type:

LLaVA-JP is a vision-language model that can converse about input images.
This model was trained by fine-tuning llm-jp/llm-jp-1.3b-v1.0 using LLaVA method and google/siglip-so400m-patch14-384 is used as Image Encoder.

Training:

This model was initially trained with the Vision Projector using LLaVA-CC3M-Pretrain-595K-JA and STAIR Captions.
In the second phase, it was fine-tuned with LLaVA-Instruct-150K-JA and Japanese Visual Genome.

resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main

How to use the model

1. Download dependencies

git clone https://github.com/tosiyuki/LLaVA-JP.git

2. Inference

import requests
import torch
import transformers
from PIL import Image

from transformers.generation.streamers import TextStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments
from llava.train.dataset import tokenizer_image_token


if __name__ == "__main__":
    parser = transformers.HfArgumentParser(
        (ModelArguments, DataArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    model_path = 'toshi456/llava-jp-1.3b-v1.0-siglip-so400m-patch14-384'
    device = "cuda" if torch.cuda.is_available() else "cpu"
    torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32

    model = LlavaGpt2ForCausalLM.from_pretrained(
        model_path, 
        low_cpu_mem_usage=True,
        use_safetensors=True,
        torch_dtype=torch_dtype,
        device_map=device,
    )
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model_path,
        model_max_length=1024,
        padding_side="right",
        use_fast=False,
    )
    model.eval()

    conv_mode = "v1"
    conv = conv_templates[conv_mode].copy()

    # image pre-process
    image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
    image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
    if device == "cuda":
        image_tensor = model.get_model().vision_tower.image_processor(image, return_tensors='pt')['pixel_values'].half().cuda().to(torch_dtype)
    else:
        image_tensor = model.get_model().vision_tower.image_processor(image, return_tensors='pt')['pixel_values'].to(torch_dtype)

    # create prompt
    # ユーザー: <image>\n{prompt}
    prompt = "猫の隣には何がありますか?"
    inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
    conv.append_message(conv.roles[0], inp)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()

    input_ids = tokenizer_image_token(
        prompt, 
        tokenizer, 
        IMAGE_TOKEN_INDEX, 
        return_tensors='pt'
    ).unsqueeze(0)
    if device == "cuda":
        input_ids = input_ids.to(device)

    input_ids = input_ids[:, :-1] # </sep>がinputの最後に入るので削除する
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0)

    # predict
    with torch.inference_mode():
        model.generate(
            inputs=input_ids,
            images=image_tensor,
            do_sample=True,
            temperature=0.01,
            top_p=1.0,
            max_new_tokens=256,
            streamer=streamer,
            use_cache=True,
        )
    """猫の隣にはノートパソコンがある。<EOD|LLM-jp>"""

Training dataset

Stage1 Pretrain

Stage2 Fine-tuning

Acknowledgement

License

cc-by-nc-4.0

Downloads last month
15
Safetensors
Model size
1.86B params
Tensor type
F32
·
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train toshi456/llava-jp-1.3b-v1.0-siglip-so400m-patch14-384