File size: 3,083 Bytes
e31833f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.88
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6087
- Accuracy: 0.88
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9526 | 1.0 | 112 | 1.8797 | 0.74 |
| 0.9704 | 2.0 | 225 | 1.0561 | 0.7 |
| 0.7957 | 3.0 | 337 | 0.7362 | 0.77 |
| 0.4428 | 4.0 | 450 | 0.7820 | 0.8 |
| 0.1422 | 5.0 | 562 | 0.6142 | 0.84 |
| 0.3502 | 6.0 | 675 | 0.9189 | 0.82 |
| 0.01 | 7.0 | 787 | 0.7735 | 0.83 |
| 0.0068 | 8.0 | 900 | 1.0699 | 0.81 |
| 0.1751 | 9.0 | 1012 | 0.5360 | 0.88 |
| 0.0045 | 10.0 | 1125 | 0.5377 | 0.89 |
| 0.154 | 11.0 | 1237 | 0.6542 | 0.86 |
| 0.0025 | 12.0 | 1350 | 0.6206 | 0.89 |
| 0.0022 | 13.0 | 1462 | 0.6118 | 0.88 |
| 0.0021 | 14.0 | 1575 | 0.5961 | 0.89 |
| 0.0018 | 15.0 | 1687 | 0.5958 | 0.88 |
| 0.0017 | 16.0 | 1800 | 0.6062 | 0.88 |
| 0.0017 | 17.0 | 1912 | 0.6005 | 0.88 |
| 0.0015 | 18.0 | 2025 | 0.6052 | 0.88 |
| 0.0014 | 19.0 | 2137 | 0.6114 | 0.88 |
| 0.0015 | 19.91 | 2240 | 0.6087 | 0.88 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
|