metadata
license: mit
language:
- en
tags:
- sentence-embedding
- sentence-similarity
- transformers
- feature-extraction
pipeline_tag: sentence-similarity
Phi-2-Text-Embedding-cft
Description
This is a fine-tuned version of Phi-2 to perform Text Embedding tasks. The model is fine-tuned using the Contrastive Fine-tuning and LoRA technique on NLI datasets. The paper can be found here.
Base Model
Usage
- Clone Phi-2 repository
git clone https://huggingface.co/microsoft/phi-2
- Change a tokenizer setting in
tokenizer_config.json
"add_eos_token": true
- Use the model
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import numpy as np
class PhiSentenceEmbedding:
def __init__(self, model_path='microsoft/phi-2', adapter_path=None):
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForCausalLM.from_pretrained(model_path,
torch_dtype=torch.bfloat16,
device_map='cuda',
trust_remote_code=True)
if adapter_path != None:
# Load fine-tuned LoRA
self.model.load_adapter(adapter_path)
def get_last_hidden_state(self, text):
inputs = self.tokenizer(text, return_tensors="pt").to('cuda')
with torch.no_grad():
out = self.model(**inputs, output_hidden_states=True).hidden_states[-1][0, -1, :]
return out.squeeze().float().cpu().numpy()
def encode(self, sentences: list[str], **kwargs) -> list[np.ndarray]:
"""
Returns a list of embeddings for the given sentences.
Args:
sentences: List of sentences to encode
Returns:
List of embeddings for the given sentences
"""
out = []
for s in sentences:
out.append(self.get_last_hidden_state(s))
return out
phi_sentence_embedding = PhiSentenceEmbedding(<your-cloned-base-model-path>, 'trapoom555/Phi-2-Text-Embedding-cft')
example_sentences = ["I don't like apples", "I like apples"]
encoded_sentences = phi_sentence_embedding.encode(example_sentences)
print(encoded_sentences)
Training Details
Training Details | Value |
---|---|
Loss | InfoNCE |
Batch Size | 60 |
InfoNCE Temperature | 0.05 |
Learning Rate | 5e-05 |
Warmup Steps | 100 |
Learning Rate Scheduler | CosineAnnealingLR |
LoRA Rank | 8 |
LoRA Alpha | 32 |
LoRA Dropout | 0.1 |
Training Precision | bf16 |
Max Epoch | 1 |
GPU | RTX3090 |
Num GPUs | 4 |
Training Scripts
The training script for this model is written in this Github repository.
Checkpoints
We provide checkpoints every 500 training steps which can be found here.
Evaluation Results
Benchmarks | Before cft | After cft |
---|---|---|
STS12 | 23.04 | 61.62 |
STS13 | 20.79 | 71.87 |
STS14 | 17.06 | 60.46 |
STS15 | 24.56 | 71.18 |
STS16 | 48.68 | 74.77 |
STS17 | 41.43 | 80.20 |
STSBenchmark | 37.87 | 79.46 |
BOISSES | 28.04 | 64.06 |
SICK-R | 48.40 | 74.37 |
Overall | 32.21 | 70.89 |
Contributors
Trapoom Ukarapol, Zhicheng Lee, Amy Xin
Foot Notes
This work is the final project of the Natural Language Processing Spring 2024 course at Tsinghua University 🟣. We would like to express our sincere gratitude to this course !