Edit model card

MRC_ER_videberta-base_word_ViWikiFC

This model is a fine-tuned version of Fsoft-AIC/videberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0166
  • Exact Match: 0.7804
  • F1: 0.8093

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Exact Match F1
0.6374 1.0 2093 1.7652 0.7622 0.7962
0.5612 2.0 4186 1.7521 0.7718 0.8046
0.5021 3.0 6279 1.8670 0.7823 0.8110
0.4184 4.0 8372 1.9411 0.7823 0.8087
0.381 5.0 10465 2.0166 0.7804 0.8093

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
184M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tringuyen-uit/MRC_ER_videberta-base_word_ViWikiFC

Finetuned
(13)
this model