|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- Crystalcareai/openhermes_200k_unfiltered |
|
language: |
|
- en |
|
library_name: transformers |
|
base_model: h2oai/h2o-danube2-1.8b-base |
|
tags: |
|
- llama-factory |
|
- unsloth |
|
--- |
|
# h2o-danube2 with ChatML template |
|
|
|
This is a [BAdam](https://arxiv.org/abs/2404.02827 "BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models") and [LoRA+](https://arxiv.org/abs/2402.12354 "LoRA+: Efficient Low Rank Adaptation of Large Models") fine-tuned danube2 base model. It uses the ChatML template and was trained on the [openhermes-unfiltered](https://huggingface.co/datasets/Crystalcareai/openhermes_200k_unfiltered). |
|
|
|
## Quants |
|
|
|
Thank you [mradermacher](https://huggingface.co/mradermacher)! |
|
|
|
- [mradermacher/danube2-1.8b-openhermes-GGUF](https://huggingface.co/mradermacher/danube2-1.8b-openhermes-GGUF) |
|
|
|
## Template |
|
|
|
```jinja |
|
<|im_start|>user |
|
{{instruction}}<|im_end|> |
|
<|im_start|>assistant |
|
{{response}}<|im_end|> |
|
``` |
|
|
|
|
|
## BAdam |
|
|
|
**System:** You are a helpful assistant. |
|
|
|
```yaml |
|
### model |
|
model_name_or_path: danube2-base-chatml |
|
|
|
### method |
|
stage: sft |
|
do_train: true |
|
finetuning_type: full |
|
use_badam: true |
|
badam_switch_mode: ascending |
|
badam_switch_interval: 50 |
|
badam_verbose: 1 |
|
badam_start_block: 10 |
|
seed: 720 |
|
|
|
### dataset |
|
dataset: openhermes_unfiltered |
|
template: ninja_chatml |
|
cutoff_len: 8192 |
|
overwrite_cache: false |
|
preprocessing_num_workers: 12 |
|
|
|
### output |
|
output_dir: openhermes-chatml-badam |
|
logging_steps: 5 |
|
save_steps: 1 |
|
save_strategy: epoch |
|
plot_loss: true |
|
overwrite_output_dir: false |
|
|
|
### train |
|
per_device_train_batch_size: 2 |
|
gradient_accumulation_steps: 8 |
|
learning_rate: 0.00001 |
|
num_train_epochs: 1 |
|
lr_scheduler_type: constant_with_warmup |
|
warmup_ratio: 0.01 |
|
bf16: true |
|
flash_attn: fa2 |
|
|
|
### eval |
|
val_size: 0.01 |
|
per_device_eval_batch_size: 1 |
|
eval_strategy: steps |
|
eval_steps: 2000 |
|
``` |
|
|
|
### BAdam Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:-----:|:---------------:| |
|
| 0.7971 | 0.1748 | 2000 | 0.7418 | |
|
| 0.6815 | 0.3496 | 4000 | 0.7178 | |
|
| 0.6593 | 0.5245 | 6000 | 0.7055 | |
|
| 0.6923 | 0.6993 | 8000 | 0.6960 | |
|
| 0.6942 | 0.8741 | 10000 | 0.6877 | |
|
|
|
|
|
## QLoRA+ |
|
```yaml |
|
### model |
|
model_name_or_path: openhermes-chatml-badam |
|
|
|
### method |
|
stage: sft |
|
do_train: true |
|
finetuning_type: lora |
|
lora_target: all |
|
loraplus_lr_ratio: 16.0 |
|
lora_rank: 8 |
|
lora_alpha: 16 |
|
use_unsloth: true |
|
quantization_bit: 4 |
|
upcast_layernorm: true |
|
seed: 3141 |
|
|
|
### dataset |
|
dataset: openhermes_unfiltered |
|
template: hermes_chatml |
|
cutoff_len: 8192 |
|
overwrite_cache: false |
|
preprocessing_num_workers: 12 |
|
|
|
### output |
|
output_dir: openhermes-chatml-badam/loraplus |
|
logging_steps: 1 |
|
save_steps: 1 |
|
save_strategy: epoch |
|
plot_loss: true |
|
overwrite_output_dir: false |
|
|
|
### train |
|
per_device_train_batch_size: 4 |
|
gradient_accumulation_steps: 4 |
|
learning_rate: 0.0001 |
|
num_train_epochs: 1.0 |
|
lr_scheduler_type: cosine |
|
warmup_ratio: 0.01 |
|
bf16: true |
|
flash_attn: fa2 |
|
#neftune_noise_alpha: 5 |
|
|
|
### eval |
|
val_size: 0.02 |
|
per_device_eval_batch_size: 1 |
|
eval_strategy: steps |
|
eval_steps: 1000 |
|
``` |
|
|
|
### QLoRA+ Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:-----:|:---------------:| |
|
| 0.6523 | 0.0883 | 1000 | 0.7126 | |
|
| 0.6398 | 0.1766 | 2000 | 0.7086 | |
|
| 0.6865 | 0.2649 | 3000 | 0.7001 | |
|
| 0.6714 | 0.3532 | 4000 | 0.6917 | |
|
| 0.7213 | 0.4415 | 5000 | 0.6819 | |
|
| 0.7764 | 0.5298 | 6000 | 0.6721 | |
|
| 0.6931 | 0.6181 | 7000 | 0.6638 | |
|
| 0.6632 | 0.7064 | 8000 | 0.6560 | |
|
| 0.5966 | 0.7947 | 9000 | 0.6514 | |
|
| 0.6339 | 0.8830 | 10000 | 0.6482 | |
|
| 0.4987 | 0.9713 | 11000 | 0.6472 | |