metadata
tags:
- autotrain
- text-classification
language:
- unk
widget:
- text: I love AutoTrain
datasets:
- trung0209/autotrain-data-rumi-bert-large-case
co2_eq_emissions:
emissions: 0.8802978764048797
Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 73218139171
- CO2 Emissions (in grams): 0.8803
Validation Metrics
- Loss: 0.285
- Accuracy: 0.938
- Macro F1: 0.935
- Micro F1: 0.938
- Weighted F1: 0.938
- Macro Precision: 0.947
- Micro Precision: 0.938
- Weighted Precision: 0.941
- Macro Recall: 0.929
- Micro Recall: 0.938
- Weighted Recall: 0.938
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/trung0209/autotrain-rumi-bert-large-case-73218139171
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("trung0209/autotrain-rumi-bert-large-case-73218139171", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("trung0209/autotrain-rumi-bert-large-case-73218139171", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)