tsavage68's picture
End of training
6cc8a43 verified
metadata
license: apache-2.0
base_model: mosaicml/mpt-7b-instruct
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: mpt_1000_STEPS_1e6_rate_01_beta_DPO
    results: []

mpt_1000_STEPS_1e6_rate_01_beta_DPO

This model is a fine-tuned version of mosaicml/mpt-7b-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6555
  • Rewards/chosen: -0.9911
  • Rewards/rejected: -1.1284
  • Rewards/accuracies: 0.6220
  • Rewards/margins: 0.1372
  • Logps/rejected: -32.8413
  • Logps/chosen: -30.7037
  • Logits/rejected: 12.5582
  • Logits/chosen: 12.5620

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.7012 0.1 100 0.6878 0.0402 0.0262 0.5516 0.0140 -21.2953 -20.3903 14.1969 14.1998
0.6605 0.2 200 0.6893 0.1209 0.0818 0.5670 0.0391 -20.7398 -19.5837 13.0519 13.0548
0.657 0.29 300 0.6715 -0.4737 -0.5524 0.5758 0.0787 -27.0816 -25.5295 13.1844 13.1876
0.6934 0.39 400 0.6676 -0.8625 -0.9556 0.5934 0.0932 -31.1138 -29.4168 12.8462 12.8498
0.6891 0.49 500 0.6641 -1.0231 -1.1288 0.6088 0.1057 -32.8455 -31.0235 12.6874 12.6909
0.6492 0.59 600 0.6564 -0.9706 -1.0997 0.6462 0.1291 -32.5548 -30.4985 12.7748 12.7786
0.6512 0.68 700 0.6569 -0.9892 -1.1224 0.6220 0.1332 -32.7819 -30.6846 12.6401 12.6438
0.6687 0.78 800 0.6556 -0.9937 -1.1300 0.6330 0.1363 -32.8571 -30.7290 12.5528 12.5566
0.6668 0.88 900 0.6552 -0.9899 -1.1276 0.6308 0.1376 -32.8330 -30.6916 12.5557 12.5594
0.5867 0.98 1000 0.6555 -0.9911 -1.1284 0.6220 0.1372 -32.8413 -30.7037 12.5582 12.5620

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2