metadata
base_model: mistralai/Mistral-7B-v0.3
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: legal_mistral
results: []
legal_mistral
This model is a fine-tuned version of mistralai/Mistral-7B-v0.3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6537
- Law Precision: 0.7614
- Law Recall: 0.9054
- Law F1: 0.8272
- Law Number: 74
- Violated by Precision: 0.6383
- Violated by Recall: 0.8219
- Violated by F1: 0.7186
- Violated by Number: 73
- Violated on Precision: 0.3768
- Violated on Recall: 0.4727
- Violated on F1: 0.4194
- Violated on Number: 55
- Violation Precision: 0.4510
- Violation Recall: 0.6273
- Violation F1: 0.5247
- Violation Number: 601
- Overall Precision: 0.4876
- Overall Recall: 0.6600
- Overall F1: 0.5608
- Overall Accuracy: 0.9389
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Law Precision | Law Recall | Law F1 | Law Number | Violated by Precision | Violated by Recall | Violated by F1 | Violated by Number | Violated on Precision | Violated on Recall | Violated on F1 | Violated on Number | Violation Precision | Violation Recall | Violation F1 | Violation Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 45 | 0.3581 | 0.3158 | 0.2432 | 0.2748 | 74 | 0.0 | 0.0 | 0.0 | 73 | 0.0 | 0.0 | 0.0 | 55 | 0.1694 | 0.3111 | 0.2194 | 601 | 0.1739 | 0.2553 | 0.2069 | 0.8813 |
No log | 2.0 | 90 | 0.2947 | 0.4224 | 0.6622 | 0.5158 | 74 | 0.46 | 0.6301 | 0.5318 | 73 | 0.2 | 0.1455 | 0.1684 | 55 | 0.2202 | 0.3228 | 0.2618 | 601 | 0.2612 | 0.3699 | 0.3062 | 0.9038 |
No log | 3.0 | 135 | 0.2478 | 0.5167 | 0.8378 | 0.6392 | 74 | 0.4701 | 0.7534 | 0.5789 | 73 | 0.2237 | 0.3091 | 0.2595 | 55 | 0.3313 | 0.5507 | 0.4138 | 601 | 0.3544 | 0.5791 | 0.4397 | 0.9209 |
No log | 4.0 | 180 | 0.2199 | 0.6329 | 0.6757 | 0.6536 | 74 | 0.725 | 0.7945 | 0.7582 | 73 | 0.2222 | 0.3273 | 0.2647 | 55 | 0.3990 | 0.5491 | 0.4622 | 601 | 0.4274 | 0.5679 | 0.4877 | 0.9364 |
No log | 5.0 | 225 | 0.3222 | 0.8310 | 0.7973 | 0.8138 | 74 | 0.7143 | 0.5479 | 0.6202 | 73 | 0.2791 | 0.2182 | 0.2449 | 55 | 0.3404 | 0.5108 | 0.4085 | 601 | 0.3899 | 0.5205 | 0.4459 | 0.9271 |
No log | 6.0 | 270 | 0.3166 | 0.775 | 0.8378 | 0.8052 | 74 | 0.6622 | 0.6712 | 0.6667 | 73 | 0.3519 | 0.3455 | 0.3486 | 55 | 0.4220 | 0.5807 | 0.4888 | 601 | 0.4628 | 0.5965 | 0.5212 | 0.9372 |
No log | 7.0 | 315 | 0.2988 | 0.7024 | 0.7973 | 0.7468 | 74 | 0.6923 | 0.7397 | 0.7152 | 73 | 0.48 | 0.4364 | 0.4571 | 55 | 0.3734 | 0.5840 | 0.4555 | 601 | 0.4236 | 0.6077 | 0.4992 | 0.9354 |
No log | 8.0 | 360 | 0.3663 | 0.7831 | 0.8784 | 0.8280 | 74 | 0.6774 | 0.8630 | 0.7590 | 73 | 0.3239 | 0.4182 | 0.3651 | 55 | 0.4180 | 0.6023 | 0.4935 | 601 | 0.4609 | 0.6389 | 0.5355 | 0.9376 |
No log | 9.0 | 405 | 0.4296 | 0.7143 | 0.8784 | 0.7879 | 74 | 0.6667 | 0.8493 | 0.7470 | 73 | 0.3889 | 0.5091 | 0.4409 | 55 | 0.4095 | 0.6323 | 0.4971 | 601 | 0.4519 | 0.6663 | 0.5385 | 0.9350 |
No log | 10.0 | 450 | 0.3842 | 0.7021 | 0.8919 | 0.7857 | 74 | 0.7632 | 0.7945 | 0.7785 | 73 | 0.4262 | 0.4727 | 0.4483 | 55 | 0.3948 | 0.5774 | 0.4689 | 601 | 0.4477 | 0.6189 | 0.5196 | 0.9366 |
No log | 11.0 | 495 | 0.4852 | 0.7561 | 0.8378 | 0.7949 | 74 | 0.6264 | 0.7808 | 0.6951 | 73 | 0.4545 | 0.4545 | 0.4545 | 55 | 0.4298 | 0.6057 | 0.5028 | 601 | 0.4726 | 0.6326 | 0.5410 | 0.9371 |
0.2514 | 12.0 | 540 | 0.4601 | 0.7033 | 0.8649 | 0.7758 | 74 | 0.6484 | 0.8082 | 0.7195 | 73 | 0.3768 | 0.4727 | 0.4194 | 55 | 0.4076 | 0.5724 | 0.4761 | 601 | 0.4502 | 0.6139 | 0.5195 | 0.9344 |
0.2514 | 13.0 | 585 | 0.5308 | 0.7558 | 0.8784 | 0.8125 | 74 | 0.6176 | 0.8630 | 0.7200 | 73 | 0.375 | 0.5455 | 0.4444 | 55 | 0.3433 | 0.4975 | 0.4062 | 601 | 0.4012 | 0.5691 | 0.4706 | 0.9284 |
0.2514 | 14.0 | 630 | 0.5586 | 0.7529 | 0.8649 | 0.8050 | 74 | 0.7093 | 0.8356 | 0.7673 | 73 | 0.3784 | 0.5091 | 0.4341 | 55 | 0.4246 | 0.6090 | 0.5003 | 601 | 0.4688 | 0.6463 | 0.5435 | 0.9384 |
0.2514 | 15.0 | 675 | 0.4173 | 0.8767 | 0.8649 | 0.8707 | 74 | 0.7922 | 0.8356 | 0.8133 | 73 | 0.3731 | 0.4545 | 0.4098 | 55 | 0.3991 | 0.5824 | 0.4736 | 601 | 0.4570 | 0.6227 | 0.5271 | 0.9369 |
0.2514 | 16.0 | 720 | 0.4812 | 0.825 | 0.8919 | 0.8571 | 74 | 0.7590 | 0.8630 | 0.8077 | 73 | 0.3378 | 0.4545 | 0.3876 | 55 | 0.3875 | 0.5474 | 0.4538 | 601 | 0.4448 | 0.6015 | 0.5114 | 0.9341 |
0.2514 | 17.0 | 765 | 0.5224 | 0.7805 | 0.8649 | 0.8205 | 74 | 0.75 | 0.8630 | 0.8025 | 73 | 0.3662 | 0.4727 | 0.4127 | 55 | 0.4446 | 0.6406 | 0.5249 | 601 | 0.4878 | 0.6700 | 0.5645 | 0.9382 |
0.2514 | 18.0 | 810 | 0.5306 | 0.7711 | 0.8649 | 0.8153 | 74 | 0.7326 | 0.8630 | 0.7925 | 73 | 0.3425 | 0.4545 | 0.3906 | 55 | 0.4505 | 0.6057 | 0.5167 | 601 | 0.4914 | 0.6426 | 0.5569 | 0.9393 |
0.2514 | 19.0 | 855 | 0.5059 | 0.7619 | 0.8649 | 0.8101 | 74 | 0.6854 | 0.8356 | 0.7531 | 73 | 0.3788 | 0.4545 | 0.4132 | 55 | 0.4509 | 0.6190 | 0.5217 | 601 | 0.4906 | 0.6501 | 0.5592 | 0.9392 |
0.2514 | 20.0 | 900 | 0.5216 | 0.7412 | 0.8514 | 0.7925 | 74 | 0.5865 | 0.8356 | 0.6893 | 73 | 0.3467 | 0.4727 | 0.4 | 55 | 0.3962 | 0.5840 | 0.4721 | 601 | 0.4357 | 0.6239 | 0.5131 | 0.9354 |
0.2514 | 21.0 | 945 | 0.4863 | 0.7683 | 0.8514 | 0.8077 | 74 | 0.6914 | 0.7671 | 0.7273 | 73 | 0.4262 | 0.4727 | 0.4483 | 55 | 0.4334 | 0.6007 | 0.5035 | 601 | 0.4787 | 0.6301 | 0.5441 | 0.9397 |
0.2514 | 22.0 | 990 | 0.5010 | 0.7191 | 0.8649 | 0.7853 | 74 | 0.7176 | 0.8356 | 0.7722 | 73 | 0.3710 | 0.4182 | 0.3932 | 55 | 0.4240 | 0.5890 | 0.4930 | 601 | 0.4687 | 0.6252 | 0.5358 | 0.9383 |
0.003 | 23.0 | 1035 | 0.5276 | 0.8205 | 0.8649 | 0.8421 | 74 | 0.6778 | 0.8356 | 0.7485 | 73 | 0.3768 | 0.4727 | 0.4194 | 55 | 0.4301 | 0.5940 | 0.4990 | 601 | 0.4761 | 0.6326 | 0.5433 | 0.9387 |
0.003 | 24.0 | 1080 | 0.5210 | 0.7975 | 0.8514 | 0.8235 | 74 | 0.7662 | 0.8082 | 0.7867 | 73 | 0.3692 | 0.4364 | 0.4 | 55 | 0.4315 | 0.5923 | 0.4993 | 601 | 0.4799 | 0.6252 | 0.5430 | 0.9407 |
0.003 | 25.0 | 1125 | 0.5500 | 0.7901 | 0.8649 | 0.8258 | 74 | 0.6897 | 0.8219 | 0.75 | 73 | 0.3731 | 0.4545 | 0.4098 | 55 | 0.4642 | 0.6256 | 0.5330 | 601 | 0.5024 | 0.6538 | 0.5682 | 0.9409 |
0.003 | 26.0 | 1170 | 0.5754 | 0.8205 | 0.8649 | 0.8421 | 74 | 0.7093 | 0.8356 | 0.7673 | 73 | 0.3768 | 0.4727 | 0.4194 | 55 | 0.4771 | 0.6240 | 0.5407 | 601 | 0.5162 | 0.6550 | 0.5774 | 0.9410 |
0.003 | 27.0 | 1215 | 0.6002 | 0.7805 | 0.8649 | 0.8205 | 74 | 0.6932 | 0.8356 | 0.7578 | 73 | 0.3768 | 0.4727 | 0.4194 | 55 | 0.4537 | 0.6040 | 0.5182 | 601 | 0.4947 | 0.6401 | 0.5581 | 0.9406 |
0.003 | 28.0 | 1260 | 0.6246 | 0.7901 | 0.8649 | 0.8258 | 74 | 0.6854 | 0.8356 | 0.7531 | 73 | 0.3676 | 0.4545 | 0.4065 | 55 | 0.4605 | 0.6106 | 0.5250 | 601 | 0.4995 | 0.6438 | 0.5626 | 0.9408 |
0.003 | 29.0 | 1305 | 0.6461 | 0.8 | 0.8649 | 0.8312 | 74 | 0.7011 | 0.8356 | 0.7625 | 73 | 0.3731 | 0.4545 | 0.4098 | 55 | 0.4573 | 0.6057 | 0.5211 | 601 | 0.4990 | 0.6401 | 0.5608 | 0.9408 |
0.003 | 30.0 | 1350 | 0.6604 | 0.7805 | 0.8649 | 0.8205 | 74 | 0.6778 | 0.8356 | 0.7485 | 73 | 0.3824 | 0.4727 | 0.4228 | 55 | 0.4676 | 0.6356 | 0.5388 | 601 | 0.5043 | 0.6638 | 0.5731 | 0.9399 |
0.003 | 31.0 | 1395 | 0.6739 | 0.7805 | 0.8649 | 0.8205 | 74 | 0.6593 | 0.8219 | 0.7317 | 73 | 0.4091 | 0.4909 | 0.4463 | 55 | 0.4698 | 0.6339 | 0.5397 | 601 | 0.5067 | 0.6625 | 0.5742 | 0.9402 |
0.003 | 32.0 | 1440 | 0.6841 | 0.8 | 0.8649 | 0.8312 | 74 | 0.6522 | 0.8219 | 0.7273 | 73 | 0.4127 | 0.4727 | 0.4407 | 55 | 0.4693 | 0.6356 | 0.5399 | 601 | 0.5071 | 0.6625 | 0.5745 | 0.9400 |
0.003 | 33.0 | 1485 | 0.6367 | 0.7674 | 0.8919 | 0.825 | 74 | 0.6374 | 0.7945 | 0.7073 | 73 | 0.3731 | 0.4545 | 0.4098 | 55 | 0.4539 | 0.6389 | 0.5308 | 601 | 0.4890 | 0.6638 | 0.5631 | 0.9392 |
0.0063 | 34.0 | 1530 | 0.5328 | 0.8312 | 0.8649 | 0.8477 | 74 | 0.7273 | 0.7671 | 0.7467 | 73 | 0.4426 | 0.4909 | 0.4655 | 55 | 0.4481 | 0.6106 | 0.5169 | 601 | 0.4971 | 0.6401 | 0.5596 | 0.9400 |
0.0063 | 35.0 | 1575 | 0.5545 | 0.7927 | 0.8784 | 0.8333 | 74 | 0.6941 | 0.8082 | 0.7468 | 73 | 0.4030 | 0.4909 | 0.4426 | 55 | 0.4498 | 0.6190 | 0.5210 | 601 | 0.4929 | 0.6513 | 0.5612 | 0.9399 |
0.0063 | 36.0 | 1620 | 0.5684 | 0.7805 | 0.8649 | 0.8205 | 74 | 0.7160 | 0.7945 | 0.7532 | 73 | 0.4912 | 0.5091 | 0.5 | 55 | 0.4400 | 0.6106 | 0.5115 | 601 | 0.4905 | 0.6438 | 0.5568 | 0.9404 |
0.0063 | 37.0 | 1665 | 0.5208 | 0.7765 | 0.8919 | 0.8302 | 74 | 0.6186 | 0.8219 | 0.7059 | 73 | 0.3714 | 0.4727 | 0.4160 | 55 | 0.4387 | 0.6190 | 0.5135 | 601 | 0.4764 | 0.6526 | 0.5507 | 0.9377 |
0.0063 | 38.0 | 1710 | 0.5981 | 0.7831 | 0.8784 | 0.8280 | 74 | 0.6667 | 0.8219 | 0.7362 | 73 | 0.3906 | 0.4545 | 0.4202 | 55 | 0.4638 | 0.6506 | 0.5416 | 601 | 0.5009 | 0.6737 | 0.5746 | 0.9395 |
0.0063 | 39.0 | 1755 | 0.6085 | 0.7738 | 0.8784 | 0.8228 | 74 | 0.6593 | 0.8219 | 0.7317 | 73 | 0.4 | 0.4727 | 0.4333 | 55 | 0.4646 | 0.6439 | 0.5397 | 601 | 0.5014 | 0.6700 | 0.5736 | 0.9396 |
0.0063 | 40.0 | 1800 | 0.6269 | 0.7901 | 0.8649 | 0.8258 | 74 | 0.6977 | 0.8219 | 0.7547 | 73 | 0.3934 | 0.4364 | 0.4138 | 55 | 0.4599 | 0.6389 | 0.5348 | 601 | 0.5005 | 0.6625 | 0.5702 | 0.9394 |
0.0063 | 41.0 | 1845 | 0.6321 | 0.7927 | 0.8784 | 0.8333 | 74 | 0.6977 | 0.8219 | 0.7547 | 73 | 0.3934 | 0.4364 | 0.4138 | 55 | 0.4638 | 0.6389 | 0.5374 | 601 | 0.5043 | 0.6638 | 0.5731 | 0.9394 |
0.0063 | 42.0 | 1890 | 0.6381 | 0.7927 | 0.8784 | 0.8333 | 74 | 0.6818 | 0.8219 | 0.7453 | 73 | 0.3871 | 0.4364 | 0.4103 | 55 | 0.4637 | 0.6373 | 0.5368 | 601 | 0.5028 | 0.6625 | 0.5717 | 0.9395 |
0.0063 | 43.0 | 1935 | 0.6482 | 0.7831 | 0.8784 | 0.8280 | 74 | 0.6977 | 0.8219 | 0.7547 | 73 | 0.4032 | 0.4545 | 0.4274 | 55 | 0.4637 | 0.6373 | 0.5368 | 601 | 0.5043 | 0.6638 | 0.5731 | 0.9396 |
0.0063 | 44.0 | 1980 | 0.6575 | 0.7738 | 0.8784 | 0.8228 | 74 | 0.6742 | 0.8219 | 0.7407 | 73 | 0.4355 | 0.4909 | 0.4615 | 55 | 0.4627 | 0.6389 | 0.5367 | 601 | 0.5033 | 0.6675 | 0.5739 | 0.9394 |
0.0011 | 45.0 | 2025 | 0.6740 | 0.75 | 0.8919 | 0.8148 | 74 | 0.6667 | 0.8219 | 0.7362 | 73 | 0.4 | 0.4727 | 0.4333 | 55 | 0.4540 | 0.6406 | 0.5314 | 601 | 0.4922 | 0.6687 | 0.5671 | 0.9389 |
0.0011 | 46.0 | 2070 | 0.6741 | 0.7674 | 0.8919 | 0.825 | 74 | 0.6818 | 0.8219 | 0.7453 | 73 | 0.4 | 0.4727 | 0.4333 | 55 | 0.4529 | 0.6406 | 0.5307 | 601 | 0.4931 | 0.6687 | 0.5677 | 0.9390 |
0.0011 | 47.0 | 2115 | 0.6766 | 0.75 | 0.8919 | 0.8148 | 74 | 0.6742 | 0.8219 | 0.7407 | 73 | 0.4 | 0.4727 | 0.4333 | 55 | 0.4552 | 0.6423 | 0.5328 | 601 | 0.4936 | 0.6700 | 0.5684 | 0.9390 |
0.0011 | 48.0 | 2160 | 0.6761 | 0.7416 | 0.8919 | 0.8098 | 74 | 0.6186 | 0.8219 | 0.7059 | 73 | 0.3768 | 0.4727 | 0.4194 | 55 | 0.4543 | 0.6456 | 0.5333 | 601 | 0.4869 | 0.6725 | 0.5649 | 0.9383 |
0.0011 | 49.0 | 2205 | 0.6523 | 0.7614 | 0.9054 | 0.8272 | 74 | 0.6316 | 0.8219 | 0.7143 | 73 | 0.3768 | 0.4727 | 0.4194 | 55 | 0.4516 | 0.6290 | 0.5257 | 601 | 0.4876 | 0.6613 | 0.5613 | 0.9387 |
0.0011 | 50.0 | 2250 | 0.6537 | 0.7614 | 0.9054 | 0.8272 | 74 | 0.6383 | 0.8219 | 0.7186 | 73 | 0.3768 | 0.4727 | 0.4194 | 55 | 0.4510 | 0.6273 | 0.5247 | 601 | 0.4876 | 0.6600 | 0.5608 | 0.9389 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1