fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.25_g0.5-0.05_10_0.004_40

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0890
  • Wer: 0.0978

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer
522.579 0.94 50 251.0458 14.9639
317.1515 1.89 100 84.8688 0.9971
57.5912 2.83 150 24.7802 1.0
28.4209 3.77 200 21.7164 1.0
27.1215 4.72 250 21.1519 1.0
26.1663 5.66 300 20.5749 1.0
25.4374 6.6 350 20.1536 1.0
24.5548 7.55 400 19.6697 1.0
24.1548 8.49 450 19.5588 1.0
24.4262 9.43 500 19.4870 1.0
24.0949 10.38 550 19.5979 1.0
24.1762 11.32 600 20.2140 1.0
23.2554 12.26 650 20.0865 1.0
22.7304 13.21 700 19.4624 0.9999
22.0028 14.15 750 17.8907 0.9991
20.0064 15.09 800 11.9386 0.7020
12.6884 16.04 850 5.5360 0.3161
7.2843 16.98 900 3.4633 0.2105
5.2335 17.92 950 2.6680 0.1726
4.2601 18.87 1000 2.1859 0.1505
3.6512 19.81 1050 1.9664 0.1471
3.2164 20.75 1100 1.7849 0.1351
3.0286 21.7 1150 1.6425 0.1313
2.776 22.64 1200 1.5509 0.1323
2.5805 23.58 1250 1.5048 0.1281
2.372 24.53 1300 1.4450 0.1169
2.3566 25.47 1350 1.3800 0.1136
2.137 26.42 1400 1.3534 0.1164
2.1112 27.36 1450 1.3263 0.1132
1.9889 28.3 1500 1.3027 0.1091
1.9183 29.25 1550 1.2998 0.1117
1.8744 30.19 1600 1.2637 0.1093
1.75 31.13 1650 1.2712 0.1059
1.7865 32.08 1700 1.2368 0.1092
1.6976 33.02 1750 1.2081 0.1039
1.6891 33.96 1800 1.2146 0.1064
1.5919 34.91 1850 1.2082 0.1080
1.5751 35.85 1900 1.2008 0.1033
1.5628 36.79 1950 1.1641 0.1024
1.4812 37.74 2000 1.2022 0.1054
1.4784 38.68 2050 1.1667 0.1025
1.4142 39.62 2100 1.1611 0.1054
1.3841 40.57 2150 1.1252 0.0979
1.3636 41.51 2200 1.1582 0.1022
1.3526 42.45 2250 1.1616 0.1080
1.2923 43.4 2300 1.1714 0.1045
1.2576 44.34 2350 1.1561 0.1035
1.2791 45.28 2400 1.1193 0.1006
1.2104 46.23 2450 1.1346 0.1026
1.1839 47.17 2500 1.1126 0.1009
1.1314 48.11 2550 1.1136 0.0996
1.1772 49.06 2600 1.1369 0.1029
1.1137 50.0 2650 1.1157 0.1012
1.1125 50.94 2700 1.1241 0.1015
1.1536 51.89 2750 1.1277 0.1012
1.0589 52.83 2800 1.1413 0.1142
1.1234 53.77 2850 1.1188 0.1034
1.1047 54.72 2900 1.1186 0.1068
0.9979 55.66 2950 1.1079 0.1007
0.9788 56.6 3000 1.0918 0.0939
1.009 57.55 3050 1.1172 0.1024
0.9942 58.49 3100 1.1139 0.0990
0.9602 59.43 3150 1.1063 0.1017
0.9813 60.38 3200 1.1151 0.1047
0.9112 61.32 3250 1.0930 0.0970
0.9705 62.26 3300 1.0990 0.0993
0.8753 63.21 3350 1.1053 0.1039
0.9259 64.15 3400 1.0978 0.0984
0.8877 65.09 3450 1.1047 0.0987
0.9111 66.04 3500 1.0937 0.1009
0.9103 66.98 3550 1.0963 0.0998
0.9031 67.92 3600 1.0969 0.1024
0.876 68.87 3650 1.0920 0.0964
0.8722 69.81 3700 1.0868 0.0958
0.8751 70.75 3750 1.0880 0.0966
0.8816 71.7 3800 1.0879 0.0974
0.8488 72.64 3850 1.0898 0.0974
0.8327 73.58 3900 1.0848 0.0978
0.7818 74.53 3950 1.0878 0.0957
0.8569 75.47 4000 1.0838 0.0997
0.8078 76.42 4050 1.0725 0.0983
0.8557 77.36 4100 1.0776 0.1000
0.8361 78.3 4150 1.0857 0.0978
0.7911 79.25 4200 1.0816 0.0953
0.8146 80.19 4250 1.0816 0.0969
0.8237 81.13 4300 1.0928 0.1005
0.7944 82.08 4350 1.0918 0.0965
0.8108 83.02 4400 1.0946 0.0968
0.7892 83.96 4450 1.0921 0.0968
0.8261 84.91 4500 1.0867 0.0975
0.7909 85.85 4550 1.0858 0.0964
0.804 86.79 4600 1.0832 0.0966
0.7981 87.74 4650 1.0888 0.0984
0.7975 88.68 4700 1.0890 0.0986
0.7966 89.62 4750 1.0862 0.0962
0.7295 90.57 4800 1.0895 0.0968
0.8447 91.51 4850 1.0907 0.0981
0.7192 92.45 4900 1.0872 0.0967
0.8368 93.4 4950 1.0875 0.0971
0.7808 94.34 5000 1.0887 0.0977
0.76 95.28 5050 1.0896 0.0978
0.7858 96.23 5100 1.0896 0.0974
0.766 97.17 5150 1.0894 0.0978
0.7899 98.11 5200 1.0898 0.0978
0.784 99.06 5250 1.0889 0.0978
0.801 100.0 5300 1.0890 0.0978

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.25_g0.5-0.05_10_0.004_40

Finetuned
(56)
this model